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 A B S T R A C T

Humans are remarkably efficient at decision making, even in ‘‘open-ended’’ problems where the set of possible 
actions is too large for exhaustive evaluation. Our success relies, in part, on processes for calling to mind the 
right candidate actions. When these processes fail, the result is a kind of puzzle in which the value of a solution 
would be obvious once it is considered, but never gets considered in the first place. Recently, machine learning 
(ML) architectures have attained or even exceeded human performance on open-ended decision making tasks 
such as playing chess and Go. We ask whether the broad architectural principles that underlie ML success in 
these domains generate similar consideration failures to those observed in humans. We demonstrate a case in 
which they do, illuminating how humans make open-ended decisions, how this relates to ML approaches to 
similar problems, and how both architectures lead to characteristic patterns of success and failure.
1. Introduction

Many everyday decision making problems present too many possi-
ble solutions for exhaustive consideration: Imagine all the books we 
could choose to read next; all the people we could spend a Sunday 
afternoon with; all the different ways to express an idea. Fortunately, 
when facing these kinds of open-ended problems, we efficiently call to 
mind a small set of good candidates (Hauser, 2014; Morris, Phillips, 
Huang, & Cushman, 2021; Nedungadi & Hutchinson, 1985; Phillips & 
Cushman, 2017; Zhang et al., 2021). Indeed, efficient consideration of 
promising options during decision-making is a cornerstone of human 
intelligence (Phillips, Morris, & Cushman, 2019; Simon, 1955).

However, efficient consideration also generates characteristic er-
rors. In some cognitive puzzles, the correct solutions systematically fail
to come to mind (Batchelder & Alexander, 2012; Gilhooly & Murphy, 
2005). For example, in chess, a novice player might not consider a 
sequence of moves that requires sacrificing a valuable piece to guar-
antee a win later on. If such a solution were proposed to them, they 
could understand why it is favorable. However, the cognitive puzzle 
arises because the player does not ever consider the correct sequence 
of moves in the first place. This kind of problem arises not only in 
decision-making, of course, but also in many other tasks (Dasgupta, 
Schulz, & Gershman, 2017) such as causal inference (Bramley & Xu, 
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2023), theory learning (Ullman, Goodman, & Tenenbaum, 2012), and 
reasoning (Wason, 1968).

Our goal is to better understand how people efficiently generate 
candidate solutions to decision-making problems, and also how this 
leads to predictable failures and puzzles. We focus on one element 
of candidate generation in particular: Value generalization, or the 
way that people rely on past experience of reward to predict which 
candidate actions will be rewarding in the future. The key idea is 
simple: If the necessary action to solve the current problem has been 
assigned high heuristic value based on prior experience, it will come 
quickly to mind. If not, the correct solution will evade consideration, 
resulting in a cognitive puzzle. Since value generalization plays a key 
role in contemporary machine learning (ML) architectures for choice, 
our approach is to ask whether comparable patterns of success and 
failure arise for humans and for a representative ML architecture.

1.1. Candidate generation by value generalization

There are many different ways in which people come to generate 
candidate solutions to problems. We focus on one method in particular: 
Generating candidates solutions to a current task by generalizing from 
the solutions that proved valuable in similar contexts in the past (John-
son & Raab, 2003; Kaiser et al., 2013; Klein, 1993; Morris et al., 2021; 
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Fig. 1. In the family of ML planning architectures that inspired our approach, a model-free estimator guiding a model-based evaluator is able to efficiently solve open-ended 
problems by preferentially evaluating actions with high estimated value. The model-free component is implemented by a Convolutional Neural Net (CNN) trained on optimal 
solutions. The model-based component is implemented by Monte-Carlo rollout; in our case, First Visit Monte-Carlo. This motif of model-free value estimates guiding efficient 
model-based evaluation is echoed in contemporary work on human planning.
Peters, Fellows, & Sheldon, 2017; Zhang et al., 2021). For instance, 
suppose that a person is trying to generate candidate chess moves in 
a position they have never played before. The moves that come to 
mind might be generalized from those that proved useful in similar 
past games. Or, suppose that person is trying to generate some options 
to cook for a dinner party on a generous budget but a short time-
frame; the dishes that come to might mind be those that worked well 
under similar constraints in the past. The key advantage of generalizing 
from past cases is that it can be computationally frugal, helping people 
to make good decisions under resource constraint (Lieder, Griffiths, & 
Hsu, 2018; Simon, 1955). In the language of reinforcement learning, 
generalizing from the solutions that worked in the past is a form of 
‘‘model free’’ solution.

Once a small set of good candidate options has been generated, 
however, it is feasible to apply more computationally demanding meth-
ods to refine the value estimates of each of them and choose the best. 
For instance, the chess player who has called to mind candidate moves 
might evaluate them by simulating the future states of the board that 
would likely arise, based on their knowledge of the rules of the game 
and the likely moves of their opponent. Or, the cook who has called 
to mind several candidate dishes might evaluate them by considering 
how much their guests would appreciate them, how difficult they 
would be to make, etc., given their knowledge of the situation. In the 
language of reinforcement learning, this method of value estimation 
is ‘‘model-based’’, because it derives a value estimate from a model 
of the causal dynamics of the environment. And, indeed, people often 
evaluate candidate actions by model-based methods (Dolan & Dayan, 
2013).

It is not surprising that different methods of evaluation are favored 
for distinct stages of the decision-making process (i.e., option gen-
eration versus selection). The problems presented by each stage are 
distinct and, in general, we should expect different kinds of algorithms 
to be favored for different kinds of optimization problem (Wolpert & 
Macready, 1997).

In summary, then, existing evidence suggests that when faced with 
open-ended problems people sometimes use distinct mechanisms to
generate candidates and to evaluate those candidates. In these cases, 
generation depends on fast-and-frugal model-free methods, while eval-
uation depends on effortful but more accurate model-based mecha-
nisms (Hauser & Wernerfelt, 1990; Kalis, Kaiser, & Mojzisch, 2013; 
Morris et al., 2021). Similar heuristic methods of option generation (or 
hypothesis generation) have been considered for other kinds of tasks, 
such as learning causal models or theories (Zhao, Lucas, & Bramley, 
2024). This is what gives rise to the failures of consideration char-
acteristic of certain puzzles. Model-free mechanisms may assign low 
value to the correct answer, making it unlikely to come to mind; yet, 
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model-based processes may be able to quickly and decisively recognize 
the value of those solutions if only they came to mind. We interrogate 
cognitive puzzles of this kind.

1.2. Machine learning model of value function approximation

Recently, machine learning architectures have achieved perfor-
mance on par with human experts in several open-ended problems 
such as the games of chess and Go (Silver et al., 2018). These suc-
cesses depend in part on an architectural motif that efficiently selects 
candidate actions for consideration and further evaluation by using 
heuristic value estimates based on past experience. As we have seen, 
this motif parallels some current models of how humans generate 
efficient consideration sets. We therefore ask whether it can be used to 
understand not only the shared successes of human and ML planning, 
but also their characteristic failures of consideration.

Specifically, several recent ML algorithms exhibiting excellent per-
formance in open-ended problems, such as AlphaGo and its descen-
dants, rely on common architectural principles (Fig.  1). Specific se-
quences of candidate actions are evaluated by simulating their likely 
consequences, a model-based method of evaluation sometimes called 
roll-out or tree search. In open-ended problems there are, however, 
too many action sequences for exhaustive consideration. A key in-
novation addresses this problem by guiding tree search towards the 
most promising candidates based on a heuristic estimate related to 
their value. This estimate is furnished by a myopic neural net trained 
on previously played or observed games, a model-free method. Since 
players encounter novel circumstances — states of the game that have 
never before been observed — the network must generalize from 
past experience. In this manner, the neural network efficiently guides 
model-based roll-outs towards promising candidates. In sum, this ar-
chitecture employs computationally cheap but imprecise model-free 
estimates of value generate a feasible set of actions for consideration, 
and then devotes computationally expensive and precise model-based 
estimates of value to the promising candidates within this set.

This suggests a potential high-level correspondence between human 
and machine approaches to open-ended decision problems, although 
the precise implementations surely differ in their details. One obvious 
approach to establishing correspondence between humans and ML 
methods is to see whether they show comparable areas of success. 
Our experiments provide this kind of evidence. Yet, our main focus 
is not areas of shared success, but rather on a common pattern of 
failures. After all, starkly different algorithms can be used to arrive at 
the same successful solutions. Often, an algorithm’s most distinctive 
fingerprint is instead its pattern of failures (Saxe, 2005). In order 
to elicit failures, we designed a task for which we expected certain 
solutions to systematically evade consideration, whether by humans or 
machine planners.



A. Zhang et al. Cognition 259 (2025) 106108 
1.3. A sequential planning task to elicit failures of consideration

We designed a sequential decision-making task of the kind that 
the relevant ML architectures are optimized to solve. Specifically, we 
designed a gridworld game in which an agent can move valuable 
objects onto target locations to earn points. We described these objects 
to humans as cargo, and the setting as a train yard. The grid also 
contained trains (autonomous moving objects that destroy any objects 
they hit, resulting in a loss of points and bringing the train to a stop) 
and switches (which change the direction of motion of the trains).

We trained humans and an ML planning architecture on a set of 
grids comprising several mundane types, such as moving cargo onto its 
target location (‘‘Push Control’’ cases), or flipping a switch to redirect 
a train away from valuable cargo (‘‘Switch Control’’ cases), among 
others (Fig.  2). Reflecting the underlying structure of the problem, 
these training cases often present situations in which a train is heading 
towards valuable cargo and flipping a switch to redirect the train saves 
it. And, they often present situations in which a train is not heading 
towards valuable cargo, and to push that cargo in the way of the train 
would be costly and pointless. Crucially, however, our training regime 
omitted two particular types of configuration that would rarely arise 
naturally. In the first (‘‘Switch Sacrifice’’ cases), the optimal action is to 
redirect the train away from collision with a high-value object such that 
it unavoidably collides with a low-value object. In the second (‘‘Push 
Sacrifice’’ cases), the optimal action is to push a low value object into 
the path of the train in order to stop it, thus preventing it from hitting 
a high-value object.

To preview our results, both humans and the ML planner reliably 
identified the optimal solution to Switch Sacrifice cases, but often failed 
on Push Sacrifice cases. This occurs despite the fact that the potential 
outcomes for both types of case are equated, and despite the fact that 
neither type of case is present in training. Our findings suggest that this 
occurs because, based on training, switching a train away from cargo 
is heuristically estimated to have high value, while pushing cargo into 
the path of a train is heuristically estimated to have low value. Because 
these heuristic value estimates govern which actions get evaluated, the 
optimal action is quickly discovered in Switch Sacrifice cases but not 
in Push Sacrifice cases.

Against this background, we use a variety of manipulations to 
establish the robust correspondence between the performance of the 
ML architecture and the performance of human participants. We also 
take advantage of the in silico nature of the computational architec-
ture to interrogate the precise causes of the characteristic failures of 
consideration it shares with human participants.
Relationship to the trolley problem

Our task bears an obvious resemblance to the well-studied ‘‘trolley 
problem’’ (Foot, 1967; Greene, 2014), and was inspired by it. But, it 
also differs from the trolley problem in two very important ways. First, 
it does not pose a moral dilemma: The objects in question are merely 
cargo, not people. We have no reason to believe that participants 
viewed any of the tasks we presented as presenting moral dilemmas. 
Second, our data suggest that participants do not consider and then 
reject the possibility of pushing cargo in front of a train; rather, they
fail to consider the action in the first place. Thus, our ‘‘trolley puzzle’’ is 
quite different from the classic trolley problem, in which harm to people
is considered and then rejected on moral grounds. In the discussion, 
however, we return to consider ways in which these two distinct 
phenomena may nevertheless be related.

2. General methods

We asked participants to solve a series of railway operations prob-
lems in a stylized grid (or ‘‘gridworld’’; Fig.  2). These were structured 
as finite Markov decision processes—the kinds of problems to which 
standard reinforcement learning mechanisms are well suited. Partici-
pants’ objective was to maximize points by pushing cargo onto target 
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Fig. 2. Example starting state and optimal solution for each test case type in our 
task. Points are earned when cargo are pushed onto their targets and points are lost 
when the train collides with cargo. Push Sacrifice and Switch Sacrifice cases favor the 
sacrifice of the lower value cargo in order to prevent the train from colliding with the 
higher value cargo. Push Control and Switch Control cases favor pushing cargo onto 
their target locations and hitting the switch to prevent collisions, respectively. Control 
cases were among the categories featured in training, and were also included at test. 
Push Sacrifice and Switch Sacrifice cases were omitted from training and presented 
exclusively at test.

locations, earning two points for high value cargo and one point for 
low value cargo, while avoiding collisions with the train. A train 
moved across the screen in a straight line, one grid cell per time step, 
unless the participant flipped a switch to turn it 90◦ counterclockwise. 
The participant lost points in the event of a train collision: one for 
low value cargo, two for high value cargo, and four for a collision 
with themselves. Collisions always stopped the motion of the train. 
Participants performed a sequence of five actions by moving in any 
cardinal direction or standing still.

Participants completed a training phase comprising four problem-
types, but omitting the Switch Sacrifice and Push Sacrifice cases. Specif-
ically, training included Push Control cases that favored pushing ob-
ject(s) into their target locations (47%), Switch Control cases that 
favored redirecting the train away from an object collision (25%), 
‘‘Push Away’’ cases that favored pushing an object out of the path of the 
train (20%), and ‘‘Do Nothing’’ cases where nothing could be done to 
prevent an object collision (8%). Grids of each type were procedurally 
generated by randomly setting the starting positions of key items within 
a set of constraints (see SI).

Then, during the test phase, we presented participants with Push 
Sacrifice and Switch Sacrifice cases for the first time, as well as novel 
instances of the Switch Control and Push Control types seen in training. 
In order to standardize the comparison of participant scores across 
distinct categories of test grids we constructed all test grids so that the 
minimum and maximum attainable scores differed by exactly one point. 
Then, we standardized participant scores to range (0, 1) by subtracting 
the grid-specific minimum attainable score.

All studies were approved by the Institutional Review Board and 
performed with participants’ informed consent. Participants were re-
cruited from Amazon MTurk through CloudResearch and paid for 
their participation. All study materials, code, and analysis scripts are 
available at https://osf.io/et89w.

2.1. Experiment 1: Eliciting failures of consideration

The goal of Experiment 1 was to characterize overall patterns of 
failure and success across different types of test trials. Although all test 
trials were novel in their particulars, recall that two classes of test trial 
were represented in training (Push Control and Switch Control), and 
two classes were not (Push Sacrifice and Switch Sacrifice).

Naturally, participants might more easily solve the types of cases 
represented in training, compared to the types unrepresented in train-
ing. Our focus, however, is on a comparison between the two types 
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Fig. 3. Behavioral results for Experiments 1–3. Error bars represent the standard error of the mean (SEM). A. Push Sacrifice cases elicit worse performance overall but, uniquely, 
relative improvement following the first success. Pre-insight refers to all trials up to and including the first success on that problem type. Post-insight refers to all trials thereafter. 
B. Time pressure impaired performance especially for Push Sacrifice cases. C. Training experience improved scores on Switch Sacrifice cases but not on Push Sacrifice cases.
cases not represented in training. Specifically, we ask whether either 
of these classes, Switch Sacrifice and Push Sacrifice cases, reliably 
elicited failures, presumably because participants fail to even consider 
the highest-scoring solution in the first place. We assessed this in two 
ways. First, we simply measured overall levels of success vs. failure 
on these items. Obviously a case does not reliably elicit consideration 
failures if participants do not exhibit many failures at all.

Second, we asked whether participants showed evidence of a dis-
continuity in performance following their first success—in other words, 
having solved a particular class of problem once, do they become 
notably more likely to solve it correctly thereafter? This pattern would 
be consistent with the idea that once participants first appreciate the 
utility of the action in question (a sacrificing switch, or a sacrificing 
push), this candidate solution becomes more cognitively available in 
future problems of the same type.

2.1.1. Methods
After several pilot studies of the paradigm, we preregistered our 

experiment and analyses at aspredicted.org/GCL_1KQ. Of 364 partici-
pants, 109 were excluded for failing to complete all assigned rounds or 
scoring less than zero points cumulatively in training. The rules of the 
game were provided in an extensive, interactive training procedure to 
all participants. All subjects completed 60 training rounds, followed by 
50 test rounds. The 50 test rounds consisted of eight of each grid-type 
of interest (Push Sacrifice, Switch Sacrifice, Push Control, and Switch 
Control) and 18 filler grids drawn from the training distribution. All 
test grids were performed under a 7 s time delay to ensure full task 
engagement.

2.1.2. Results
Participants performed well on problems during the training phase, 

achieving an average accuracy of 77.3% (SEM = 0.5%, see SI figure for 
learning during training trials).

At test, participants performed optimally on most control cases 
of the types included in training (Push Control: M = 94.0%, SEM = 
0.5%; Switch Control: M = 96.0%, SEM = 0.4%). Notably, they also 
did so similarly on the novel type of Switch Sacrifice cases (M = 
94.5%, SEM = 0.5%). However, they were less likely to have optimally 
solved the novel type of Push Sacrifice cases (M = 62.5%, SEM = 
1.1%). These data offer some preliminary support for the conclusion 
that Push Sacrifice cases uniquely elicit consideration failures, on the 
assumption that participants who successfully consider push option in 
these cases will take it, since it is the best option—and, thus, that 
failures to take this option stem for a failure to consider it in the first 
place. To provide further support for this inference, we fit a series 
of preregistered linear mixed models, separately for Switch Sacrifice 
cases and for Push Sacrifice cases, that predicted standardized scores on 
these test items with one term capturing linear improvement over the 
test block and a second term capturing a discontinuity in performance 
following the first correct answer. Put simply, these models ask: ‘‘Does 
the experience of solving the very first problem of a certain class 
increase the likelihood of solving subsequent ones?’’ The estimated 
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marginal means from the full model indicate that, after participants 
successfully solved their first Push Sacrifice case, they became 12.8% 
(95% CI [7.0%,18.6%]) more likely to successfully solve subsequent 
Push Sacrifice cases. An ANOVA comparing a model with and without 
a term for discontinuity after first success revealed a significant effect 
(𝜒2(1) = 18.55, 𝑝 < .001). No such effect was evident in Switch Sacrifice 
cases, 𝜒2(1) = 0.02, 𝑝 = .89. In the full model for Switch Sacrifice cases, 
the estimated effect size was 𝑏 = 0.00, 95% CI [−0.037, 0.032]. Additional 
details in SI, see Fig.  3A.

Why might Push Sacrifice cases uniquely elicit failures of consider-
ation? We suggest that this may be because the problems presented in 
training generalize poorly to Push Sacrifice cases and bias consideration 
away from the optimal action sequence. One early hint to support this 
idea is that exposure to Push Sacrifice cases over the course of the test 
phase led to improved performance on this case type (see SI Fig S2). 
In an exploratory analysis, we find that performance on Push Sacrifice 
cases improves linearly with increasing experience over the course of 
the test phase. An ANOVA comparing a model with and without a 
term for linear improvement in training revealed a significant effect 
𝜒2(1) = 167.96, 𝑝 < .001. The effect size for this term in the full model 
(including a term for linear improvement and a term for discontinuity 
after first success) was 𝑏 = 0.034, 95% CI [0.024, 0.044]. The same is not 
true for Switch Sacrifice cases. An ANOVA comparing a model with 
and without a term for linear improvement in training did not reveal 
a significant effect, 𝜒2(1) = .33, 𝑝 = .57. The effect size for the linear 
improvement term in the full model was 𝑏 = 0.00, 95% CI [−0.006, 0.004]. 
This is consistent with the idea that prior experience influences the 
solutions that later come to mind. We further explore the effect of 
training experience and provide evidence for this idea in Experiment 
3.

In Experiment 1, we show that Push Sacrifice cases present a unique 
challenge for participants. It seems that, by default, participants often 
fail to consider solutions in which one uses a less costly collision to pre-
vent a more costly one. Once they ‘‘see’’ the possibility of this solution, 
however, it becomes relatively more available in subsequent problems 
of the same type. Our next experiments further explore the possibility 
that Push Sacrifice cases elicit uniquely potent failures of consideration.

2.2. Experiment 2: Manipulating deliberation time

Logically, failures of consideration will arise the most often when 
the fewest number of items is considered. (After all, if all possible 
candidates are considered, no failure of consideration is possible—any 
failure would be due to the process of evaluating candidates). Prior 
research indicates that the more time people have to solve a problem, 
the more candidate solutions they evaluate, all else being equal (Morris 
et al., 2021). Thus, we reasoned that restricting participants’ time 
budget — and thus limiting the number of items they could consider 
— would selectively exacerbate failures of consideration.

Experiment 2 therefore extended the basic design of Experiment 
1 to conditions of time pressure versus time delay. We reasoned that 
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suboptimal performance due to a failure of consideration would be 
sensitive to this manipulation. In contrast, alternative explanations 
for suboptimal performance (e.g., an unwillingness to ‘‘sacrifice’’ one 
object for another, or a misunderstanding of the rules or scoring of the 
task) would not be sensitive to this manipulation.

2.2.1. Methods
We preregistered our experiment and analyses at aspredicted.org/Q

TQ_ESN. Of 200 participants, 64 were excluded for failing to complete 
all assigned rounds, timing out in more than six rounds in the ‘‘time 
pressure’’ condition, or scoring less than zero points in training. Partic-
ipants were randomly assigned to the ‘‘time pressure’’ condition (limit 
of 7 s to complete each test round) or the ‘‘time delay’’ condition (wait 
7 s before taking first action). Under time pressure, not completing the 
round in time results in a four point penalty.

2.2.2. Results
Again, participants performed well on problems during the training 

phase, achieving an average accuracy of 80.0% (SEM = 0.7%, see SI 
figure for learning during training trials).

At test, we analyzed the effect of time pressure versus time delay 
on performance for each of our test grid types of interest. Under time 
pressure, when we expect constraints on consideration to be most 
applicable, participants solved a smaller proportion of Push Sacrifice 
cases (M = 36.9%, SEM = 1.4%; see Fig.  3B) than Switch Sacrifice 
cases (M = 84.3%, SEM = 2.4%), Push Control cases (M = 90.2%, 
SEM = 2.0%), or Switch Control cases (M = 87.6%, SEM = 0.8%). 
Additionally, imposing a time delay prompted a greater improvement 
in performance on Push Sacrifice cases (M = 59.7%, SEM = 1.5%) than 
the remaining three types of cases (Switch Sacrifice: M = 96.3%, SEM 
= 1.7%; Push Control: M = 93.8%, SEM = 0.8%; Switch Control: M 
= 95.5%, SEM = 0.5%). This suggests that Push Sacrifice cases elicit 
uniquely large consideration failures in our task. We fit a series of 
preregistered linear mixed models that predicted standardized scores 
using the lme4 package in R to test several contrasts of interest (see SI 
for details). An ANOVA comparing a model with and without a term for 
time constraint revealed a significant effect across all grid types, 𝜒2(1) =
20.45, 𝑝 < .001. In the full model including terms for time constraint, 
test grid type (Switch Sacrifice vs Push Sacrifice), and their interaction, 
the effect size for time constraint was 𝑏 = 0.11, 95% CI [0.07, 0.16]. 
Model comparison additionally revealed significantly higher scores for 
Switch Sacrifice than for Push Sacrifice cases, 𝜒2(1) = 20.03, 𝑝 < .001
(effect size from full model, 𝑏 = −0.42, 95% CI [−0.55,−0.29]), and a 
significant interaction such that the effect of time delay versus time 
pressure was greater for Push Sacrifice cases than for Switch Sacrifice 
cases 𝜒2(1) = 6.65, 𝑝 = .01 (effect size from full model, 𝑏 = 0.11, 95% CI 
[0.03, 0.19]).

In summary, time pressure exerts a uniquely large effect on Push 
Sacrifice cases, supporting the conclusion that these are especially 
susceptible to failures of consideration.

2.3. Experiment 3: Manipulating training

Why would Push Sacrifice cases be especially likely to elicit failures 
of consideration, compared with Switch Sacrifice cases? Potentially, 
this occurs because of the way that participants generalize from training 
cases (which include neither Push Sacrifice nor Switch Sacrifice cases) 
to the novel test cases. During training, participants encounter cases 
in which switching a train away from cargo is the best action overall. 
(These cases differ from our test Switch Sacrifice cases because they 
do not involve sacrificing a low value piece of cargo for a high value 
piece). This may lead them to assign a high heuristic value estimate 
to the action of switching trains away from cargo, and thus lead them 
to often spontaneously consider switch actions in novel situations. As 
a result, failures of consideration are infrequent. In contrast, during 
training, participants encounter cases in which pushing cargo into the 
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path of a train is not the optimal action (These cases differ from our 
test Push Sacrifice cases because they do not use the destruction of a 
low-value piece of cargo to prevent the destruction of a higher-value 
piece). This may lead them to assign a low heuristic value estimate 
to the action of pushing cargo in front of trains, and thus lead them 
to rarely spontaneously consider push actions in novel situations. As a 
result, failures of consideration are more frequent.

Thus, Experiment 3 contrasted a ‘‘training’’ condition, where par-
ticipants complete the training phase as normal, and a ‘‘no training’’ 
condition where participants complete the test phase directly after the 
task instructions. All participants completed the task under time pres-
sure, where failures of consideration are most evident. We predicted 
that, while training might enhance performance overall by increasing 
task familiarity, it would do more to enhance performance on test 
Switch Sacrifice cases than on test Push Sacrifice cases. Indeed, in 
theory, it might even impair performance on test Push Sacrifice cases.

2.3.1. Methods
We preregistered our experiment and analyses at aspredicted.org/KL

2_CTC. Of 600 participants, 202 were excluded for failing to complete 
all assigned rounds, timing out more than six times, timing out more 
than twice on either test case type of interest, or scoring less than 
−35 points at test. Participants were randomly assigned to either the 
‘‘training’’ or ‘‘no-training’’ condition. During the test phase, all subjects 
were placed under time pressure with a 7 s time limit. Each participant 
completed 24 test grids, consisting of three Push Sacrifice grids, three 
Switch Sacrifice grids, and twelve filler grids drawn from the training 
distribution. This reduction in number of test grids of interest was made 
in order to reduce the effect of learning from Push Sacrifice and Switch 
Sacrifice experiences during test.

2.3.2. Results
In Experiment 3, participants who were assigned to the training 

condition performed well on problems in the training phase, achieving 
an average accuracy of 71.8% (SEM = 0.9%, see SI figure for learning 
during training trials).

As expected, training had differential effects on performance for 
Switch Sacrifice and Push Sacrifice cases at test. The inclusion of train-
ing had little effect on participants’ scores in Push Sacrifice cases (with 
training: M = 17.4%, SEM = 1.8%; without training M = 15.6%, SEM 
= 2.3%) (Fig.  3C). For Switch Sacrifice cases, however, participants 
performed significantly worse without training (M = 53.1%, SEM = 
1.5%), than with training (M = 66.0%, SEM = 1.9%). We fit a series 
of preregistered linear mixed models using the lme4 package in R 
modeling standardized scores by case type (Push Sacrifice versus Switch 
Sacrifice), training, and their interaction. Random effects in the final 
model included grid ID and participant ID. An ANOVA comparing 
a model with and without a term for training experience revealed 
a significant effect of training 𝜒2(1) = 5.31, 𝑝 = .02. In the full 
model including terms for training experience, test grid type (Switch 
Sacrifice vs Push Sacrifice), and their interaction, the effect size for 
training experience was 𝑏 = 0.07, 95% CI [0.02, 0.12]. Model comparison 
additionally revealed a significant effect of case type 𝜒2(1) = 26.50, 
𝑝 < .001 (effect size from full model 𝑏 = −0.43, 95% CI [−0.55,−0.31]), 
and a significant interaction between training experience and case type 
𝜒2(1) = 4.53, 𝑝 = .03 (effect size from full model 𝑏 = −0.11, 95% CI 
[−0.22,−0.01]).

The differential effect of training provides some indication that 
heuristic value estimates derived from training support success on 
switch trials, but do not support success for Push Sacrifice trials.
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3. ML planning architecture and experiments

Next we explored whether similar patterns of performance arise if 
we attempt to solve our task using an architectural motif behind recent 
advances in machine decision-making in open-ended problems. Our 
goal was to adopt methods that are broadly representative of one family 
of current approaches, not to introduce ad hoc innovations. In other 
words, our aim is to ask, ‘‘what happens when model-based planning 
cannot evaluate all possible actions, and thus prioritizes search based 
on a heuristic estimate of value generalized from past experience?’’

We expected that, like our human participants, models from this 
family would fall prey to failures of consideration on Push Sacrifice 
problems but not Switch Sacrifice problems. This is because we ex-
pect heuristic value estimation to over -estimate the value of switching 
actions (which saves points at no cost in training, but saves points 
at a cost in test), but to under-estimate the value of pushing actions 
(which costs points without benefit in training, but cost points with 
an overriding benefit in test). By overestimating the value of switch-
ing actions, subsequent model-based search will reliably evaluate the 
candidate switching actions and discovers they are optimal (albeit at 
a lower score than initially estimated). In contrast, by underestimating 
the value of pushing actions, subsequent model-based search will often 
fail to evaluate pushing actions, and therefore fail to discover that they 
are optimal (obtaining a higher score than initially estimated).

We begin by describing the architecture in more detail, and then 
report the results of in silico experiments designed to mirror those we 
performed on humans.

3.1. Architectural details

Our architecture has two parts (Fig.  1): A neural net that ap-
proximates the state–action value function based on training, and a 
model-based method for improving these value estimates by Monte 
Carlo rollouts. The heuristic value estimates are used to prioritize 
tree search (i.e., rollouts), directing model-based exploration towards 
promising candidate actions.

3.1.1. Approximating the value function with a trained neural network
We constructed a simple Convolutional Neural Network (CNN; Le-

Cun, Bengio, & Hinton, 2015) that predicts the Q-values (Sutton & 
Barto, 1998) for each available action (up, right, down, left, and stay) 
given an input game state. The state input representation contains 
information about the time step (1–5), the locations of all objects in 
the grid, and the direction of the train. Put simply, the function of this 
CNN is to generate a heuristic estimate of the value of each action by 
generalizing from its experience during training. These value estimates 
are used to guide the search for promising actions (see the next section:
Action evaluation and control...).

To train the CNN, we generated a set of potential inputs (200,000 
grid problems from a fixed distribution) and outputs (optimal Q-values 
derived from value iteration). CNN training grids were drawn from the 
same distribution of problem types that was used to train participants 
in the behavioral task. Then, for each grid, we identified the optimal 
action sequence and associated set of states visited. These states, and 
the optimal Q-values for each action in these states, comprised the 
training inputs and outputs. (This parallels human experience during 
training, in which  80% of human-generated action sequences were 
optimal for those participants included in analysis.) See the supporting 
information text for more details about the CNN architecture and 
training.
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3.1.2. Action evaluation and control by first visit Monte Carlo
Our architecture next evaluated candidate actions by a standard 

model-based method: First-Visit Monte Carlo (FVMC) (Sutton & Barto, 
1998). This algorithm refines its policy over a series of iterations, where 
each iteration involves simulating a full action sequence and updating 
Q-values based on the simulated returns. A random simulation strategy 
is shared by other Monte-Carlo methods, including Monte-Carlo tree 
search which was featured in AlphaGo (Silver et al., 2018). However, 
FVMC is best suited to our task, which has a fixed number of time steps 
and wider range of possible outcomes. First-visit Monte Carlo computes 
Q-values as the averaged returns following the first visit to a given 
state. In our task, it is not possible to visit the same state twice in one 
simulated trajectory, meaning that there is no meaningful distinction 
between first-visit and every-visit algorithms. Exploration for FVMC 
was determined by an 𝜖-greedy strategy with 𝜖 = .2.

Crucially, we initialized the Q-values that guided FVMC using the 
estimates from our trained CNN. In this manner the CNN guided 
‘‘consideration’’ of candidate actions, especially early in the process of 
model-based evaluation (See SI for details). Put simply, the function 
of the FVMC algorithm is to use its model of the task to determine the 
precise consequences of taking various sequences of actions, in order to 
guide choice. Determining which actions to evaluate, however, is guided 
by the CNN described in the previous section (Approximating the value 
function...).

3.2. In silico experiments

Next we asked whether this architecture generates the same patterns 
of consideration failure observed in humans.

3.2.1. Model failures of consideration
First, we tested our architecture on the same novel grids that we 

presented to humans. We predicted that, like humans in Experiment 
1, it would exhibit especially poor performance on Push Sacrifice 
cases, failing to identify the optimal action, relative to Switch Sacrifice 
cases. As evident in Fig.  4A, the model consistently performs worse on 
Push Sacrifice cases compared to other problem types like our human 
participants.

Next, we fit our model to human data, comparing it with two 
alternative models designed to reflect alternative cognitive hypotheses. 
The first implements pure model-free control, in which value estimates 
from a trained CNN directly determine action selection. The second 
implements pure-model based control, in which a FVMC agent per-
forms rollouts without biasing exploration towards actions with high 
estimated value. We compare these two models to our architecture in 
which model-free value estimates guide the evaluation of candidate 
action sequences.

We investigate how well each of these three models fits human be-
havior on Push Sacrifice and Switch Sacrifice cases in Experiment 1. To 
do so, we fit each model to the data and compare the resulting Bayesian 
Information Criterion (BIC) scores, which reflect the likelihood of the 
data under each model while penalizing for model complexity.

In order to fit the models to human data we optimized each model’s 
free parameters at the group level, i.e., applying the same parameter 
settings to all participants in order to maximize the aggregate likeli-
hood of the data. We adopt this approach because the relatively small 
number of observations per participant renders subject-level estimation 
vulnerable to overfitting.

All three models involve a conversion of action value estimates to 
choice probabilities by softmax with a free parameter 𝛽 dictating the 
balance between exploitation and exploration. For the models featuring 
an FVMC component, we additionally fit the number of FVMC iterations 
to run. For the CNN-only candidate model, we use bounded local 
minimization to fit 𝛽 (Brent, 1973; Grund, 1979). For our architecture 
and the FMVC-only candidate model, we concurrently fit the number 
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Fig. 4. In silico experiments with our model. The results in all figures are obtained by running each model at increments of 50 iterations, and averaging standardized scores 
achieved over 500 runs. This is done to compute a stable value for standardized score, as each Monte Carlo rollout occurs with some degree of randomness. Points falling between 
these increments are computed using PCHIP interpolation. Error bars are omitted as they are too small to be visible. Additionally, two specific problems (from the Push Control 
category) are omitted from these visualizations because the FVMC algorithm takes notably more iterations to solve them correctly. This is done to present a clearer visual comparison 
between problem types. However, we replicate the same pattern of model results when these are included (see SI Fig S3). A. Average standardized score of the ML architecture 
as a function of the number of FVMC iterations, for each test trial type. Analogous to human performance on Push Sacrifice cases under time pressure, ML performance on push 
cases is uniquely degraded at small numbers of iterations. B. Average standardized score of the ML architecture when removing the CNN component (no training experience). In 
the lesioned model, performance on all four grid types improves similarly with increased model-based rollouts. C. Performance advantage afforded by a trained CNN as a function 
of the number of FVMC iterations, for each test trial type. Values are computed as the difference between full model performance (4 A) and lesioned model performance (4B). 
Analogous to human results, training experience induces a large performance advantage especially at a small number of iterations, for Switch Sacrifice cases but not for Push 
Sacrifice cases. In fact, there is a performance decrement induced by training uniquely for Push Sacrifice cases. Fritsch and Butland (1984).
of FVMC iterations and the softmax temperature using Bayesian op-
timization with Gaussian processes (The scikit-optimize contributors, 
2018). This optimization method was chosen because it is well suited 
for optimizing stochastic and computationally expensive functions. See 
SI for more details on parameter bounds and convergence.

Using this method, we find that our architecture (NLL = 23542.2, 
BIC = 47104.2, 𝛽 = 0.2, FVMC iterations = 6405) better accounts for 
participant performance on Push Sacrifice and Switch Sacrifice test 
cases than the CNN-only (NLL = 26156.9, BIC = 52323.6, 𝛽 = 0.4) 
and FVMC-only (NLL = 23629.5, BIC = 47278.9, 𝛽 = 0.2, FVMC 
iterations = 35016) models. By convention, the BIC advantage exceed-
ing 10 indicates strong evidence for our model compared with these 
alternatives.

3.2.2. Manipulating ‘‘decision time’’
In Experiment 2, we manipulated people’s decision time to show 

that having more time to consider options improves performance more 
on Push Sacrifice cases compared to Switch Sacrifice cases. In our 
architecture, the ‘‘decision time’’ variable is analogous to the number 
of candidate action sequences that FVMC is allowed to consider before 
selecting the best-yet-considered as its final choice. In the language of 
FVMC, the key variable is the number of ‘‘iterations’’. We therefore 
explored the effect of this parameter setting.

Fig.  4A shows the performance of our architecture on the four 
different types of test cases as a function of the number of iterations. 
As with humans under time pressure, when the number of iterations is 
small, the model performs much worse on Push Sacrifice cases than the 
other types of test case. As with humans under time delay, when the 
number of iterations increases, this disparity is reduced.

We performed a model comparison to provide further evidence for 
the correspondence between human thinking time and the number 
of FVMC iterations in our model. Here, we compared two versions 
of our proposed architecture: One that fits a single number of FVMC 
iterations to both time-pressure and time-delay conditions, and another 
that fits separate numbers of FVMC iterations to these two experi-
mental conditions. For both models, we concurrently fit an additional 
free parameter for Softmax beta. As above, parameter estimation was 
conducted at the group level. We find that a model that allows for 
a different number of FVMC iterations in the time delay and time 
pressure conditions fits human data better than a model with the same 
number of FVMC iterations across conditions. The model that allows 
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FVMC iterations to differ across conditions (NLL = 13054.59, BIC =
26137.03, 𝛽 = 0.23, Pressure FVMC iterations = 2822, Delay FVMC 
iterations = 3892) has a Bayesian Information Criteria (BIC) advantage 
of more than 10 compared with a model that does not (NLL = 13076.32, 
BIC = 26171.2, 𝛽 = 0.2, FVMC iterations = 2900), indicating strong 
evidence by convention.

As predicted, in the better fitting model, the number of FVMC 
iterations that best fits human choices under time pressure is lower than 
that for human choices under time delay.

3.2.3. Manipulating training
Next, we asked how our architecture’s performance on the four 

types of test case varies as a function of training. In this context, the 
relevant training is encoded in the CNN that approximates the value 
function. We therefore ask how performance on test cases changes if the 
contribution of this CNN is removed. In the lesioned architecture, the 
state–action value estimates that guide FVMC are therefore uniformly 
initialized to zero. This manipulation of the architecture analogizes 
to Experiment 3, in which participants either received 60 training 
rounds or none. Of course, we assume that humans bring some relevant 
experience to the task that allows them to approximate a value function 
even in the absence of task-specific training. Thus, we might expect 
differences in performance without training and in the magnitude of 
the effect of training across humans versus AI.

Comparison of panels A and B of Fig.  4 shows the differential effects 
of training on Switch Sacrifice and Push Sacrifice trial performance. 
In panel A, which shows performance (as a function of the number 
of iterations) for the trained model, we see the characteristic pattern 
where the model performs excellently on Switch Sacrifice cases and 
poorly on Push Sacrifice cases, especially with a low number of iter-
ations. In contrast, Panel B shows the results with a lesioned model 
that does not benefit from any training. Here, we see that without 
CNN training, the lesioned model does not demonstrate failures of 
consideration on Push Sacrifice cases. This does not fully capture the 
behavior of our human participants without training, however. As we 
have noted, this discrepancy may be a result of the prior experience 
our human participants likely bring to the task.

To better visualize the ‘‘training advantage’’ (or disadvantage), we 
plot the difference in average standardized scores obtained by the full 
architecture and the lesioned one, as a function of both test case type 
and the number of FVMC iterations. This is shown in Panel C of Fig. 
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Fig. 5. An analysis of the CNN’s value estimates for the key action of interest (pushing 
cargo or hitting the switch) for each test type. For the test types included in training 
(Push Control and Switch Control) value estimates are unbiased. For the test types not 
included in training value estimates are biased, but in opposite directions: Upwards for 
Switch Sacrifice cases, and downwards for Push Sacrifice cases.

4. We find that training generates a performance advantage on Switch 
Sacrifice, Switch Control, and Push Control cases. This aligns with 
the results of our human experiment, where training trials tended to 
improve performance on the same types of cases. In contrast, we find 
that training interferes with model performance on Push Sacrifice cases. 
This partially aligns with the results of our human experiment, where 
training trials provided no benefit in Push Sacrifice cases but did not 
interfere, either.

3.2.4. Interrogating value function generalization
We have proposed that both humans and our ML architecture fail 

to consider the optimal action in Push Sacrifice cases because their 
heuristic value estimates systematically underestimate the value of 
pushing an object into the path of a train. In the case of our ML 
architecture we can explore these value estimates directly. To do so, 
we computed the average signed error in value estimates generated 
by our trained CNN for the key action in each category of test case: 
Pushing an object into the path of the train (for Push Sacrifice cases), 
redirecting the train away from one object and towards another (for 
Switch Sacrifice cases), redirecting the train safely (for Switch Control 
cases), and pushing the object onto the target location (for Push Control 
cases). We did this for all of the test cases used in our human and in 
silico experiments (Fig.  5)

As expected, the CNN systematically underestimates the value of 
the optimal action in Push Sacrifice cases (a class on which it was not 
trained), while it exhibits no meaningful bias in Switch Control and 
Push Control cases (classes on which it was trained). Notably, however, 
the CNN also exhibits systematic error in its value estimate of the 
Switch Sacrifice cases. This is not unexpected, since Switch Sacrifice 
cases were not included in the training set. But, of course, we find 
that neither humans nor our ML architecture have much difficulty 
identifying the optimal solution for Switch Sacrifice cases. This is 
presumably because of the sign of the bias. In Switch Sacrifice cases 
value is overestimated (reflecting a training set in which switching the 
train often saves some cargo without causing harm to other cargo). This 
leads to model-based evaluation of the optimal action early, ensuring 
its proper consideration. In Push Sacrifice cases, value is instead un-
derestimated (reflecting a training set in which pushing cargo into a 
train harms that cargo without saving any other cargo). This inhibits 
model-based evaluation of the optimal action, leading to a systematic 
failure of consideration.

4. Discussion

We generated a set of sequential decision-making problems to be 
solved by humans and an ML planning architecture. We find that the 
same class of problems that reliably generate failures of consideration 
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in humans also generates failures in our ML planner. This suggests 
an intriguing correspondence between the broad organizational ar-
chitecture of human and machine approaches to decision-making in 
open-ended problems.

Three similarities characterized human and machine planners. First, 
both performed worse on Push Sacrifice than Switch Sacrifice cases. 
Second, this performance decrement was especially pronounced when 
time devoted to model-based evaluation was limited and, therefore, 
the initial value estimates used to determine consideration presumably 
played their greatest role. Third, training improved out-of-sample per-
formance on Switch Sacrifice cases but failed to improve (in humans) or 
actually inhibited (in ML) out-of-sample performance on Push Sacrifice 
cases.

Interrogating our ML planning architecture, it is clear why Push 
Sacrifice cases elicited consideration failures. The architecture prior-
itizes evaluation of candidate actions that are assigned high value 
estimates by a neural net. The neural net must generalize from training 
to novel types of cases in which low-value cargo must be destroyed in 
order to save high-value cargo. We find that the neural net provides 
biased value estimates across both Switch Sacrifice cases and Push 
Sacrifice cases, but in opposite directions: It overestimates the value 
of switch actions, but underestimates the value of push actions. As a 
consequence, it quickly evaluates the switch actions and discovers that, 
while less valuable than expected, they are better than the alternatives. 
In contrast, it inhibits evaluation of push actions and therefore fails to 
discover that they, too, are better than the alternatives. The result is a 
cognitive puzzle specific to Push Sacrifice cases.

The qualitative similarities between human and ML performance 
suggest that they may employ broadly similar approaches to choice in 
this task: Consideration of candidate actions generated by a statistical 
approximation of the value-function trained on prior experience in 
related tasks, followed by refinement of those value estimates via 
model-based rollout. This is consistent with existing work on how 
people use value-based methods to solve certain open-ended prob-
lems (Hauser & Wernerfelt, 1990; Morris et al., 2021). Our findings 
suggest that participants do not rely exclusively on model-based eval-
uation, unguided by any heuristic estimate of the value of considering 
different sequences of actions. Such a model could not explain why 
participants are far more adept at finding the solution to switch cases 
than push cases, or why they show selective effects of training and 
learning for push cases. Moreover, when we fit participant behavior 
to an architecture that uses model-based methods only, it significantly 
underperforms the hybrid, two-stage architecture.

Alternatively, is it possible that when participants failed to select
optimal sequence of actions, they actually considered those sequences, 
but underestimated their value based on a heuristic, model-free mech-
anism? Although possible, several factors suggest this is not likely. 
The structure of our task — simple, intuitive, and deterministic — 
means that the true (model-based) value of a sequence of actions is 
obvious as soon as you consider it. For instance, the optimal sequence 
in push cases avoids hitting the high value target, and no other se-
quence achieves this. It thus seems unlikely that a participant would 
consider this sequence of actions and then reject on the grounds that 
its model-free value is low. Further evidence against this possibility 
again comes from our model fitting: We find that a model-free-only 
architecture does worse than our proposed hybrid two-stage archi-
tecture. Of course, other architectures might be entertained, perhaps 
incorporating promising insights from prior research (Huys et al., 2012; 
Keramati, Smittenaar, Dolan, & Dayan, 2016), and these remain for 
future research to explore.

To the extent that human and ML performance align, we suggest 
that it is for two reasons: one about the structure of experience, 
and another about the structure of planning. First, like our model, 
humans experience many situations in which it makes sense to avoid 
collisions to prevent harm, and few situations in which it makes sense to 
cause collisions to prevent greater harm. Second, statistical approaches 
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to value estimation may be biased when generalizing to new case 
types and, when these heuristic value estimates are used to guide 
consideration, this will lead to planning failures.

Of course, there are several ways in which human performance 
likely diverges from our ML planning architecture in its details. We 
designed our CNN to be representative of standard approaches in 
contemporary machine learning, but we do not assume, nor does our 
data imply, any strong correspondence between the construction of the 
CNN and the neural mechanisms that humans use to approximate a 
value function in our task. Moreover, humans’ heuristic value estimates 
are likely guided by a wealth of experience and structured knowledge 
(e.g., about trains, cargo, etc.) that go well beyond the specific instruc-
tions and training that we provided in the context of our experiment. 
Indeed, we know from existing work that insight can be guided not 
just by the kinds of value representations we interrogate here but also 
by semantic structures (Nedungadi & Hutchinson, 1985; Zhang et al., 
2021) and, in particular, from conceptual restructuring (Batchelder & 
Alexander, 2012; Gilhooly & Murphy, 2005). It remains to future work 
to explore whether, and how, these more structured representations 
might be incorporated into the kind of ML framework employed here. 
A conceptual restructuring of this kind might play an important part 
in explaining why, once humans solved their first push-type case, they 
became relatively more likely to solve subsequent cases. (An effect of 
this kind was foreclosed in principle for our ML architecture, since no 
experiences during the test phase were used to retrain the CNN).

Our task resembles the famous ‘‘trolley problem’’ (Foot, 1967; 
Greene, 2014). Unlike the real trolley problem, however, in our ‘‘trolley 
puzzle’’ participants are unlikely to have conceived of cargo operations 
in moral terms, and our ML architecture was not designed for moral 
evaluation. Also, the trolley problem has not traditionally been used 
to demonstrate a failure to consider sacrificial harm, but instead the 
judgment that it is wrong. Nevertheless, the same kinds of mechanisms 
that furnish model-free value estimates guiding option consideration 
in our puzzle could potentially play a parallel role in certain forms of 
moral evaluation, as has been suggested elsewhere (Crockett, 2013; 
Cushman, 2013; Phillips & Cushman, 2017). This deserves further 
study.

Currently, humans are unparalleled in their capacity for intelligent, 
creative thought, and yet we are also prone to certain startling and 
predictable failures. Recent advances in ML have begun to carve away 
selected domains where human performance can be matched, or even 
exceeded. Presumably some ML architectures have close human paral-
lels and other do not. Here, focusing on a case of apparent alignment, 
we show that human and machine planning is characterized not just by 
the same dazzling successes, but also by the same failures.
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