Cognition 259 (2025) 106108

journal homepage: www.elsevier.com/locate/cognit

Contents lists available at ScienceDirect

Cognition

Check for

Similar failures of consideration arise in human and machine planning | e

Alice Zhang »"©>*, Max Langenkamp ", Max Kleiman-Weiner ***, Tuomas Oikarinen ®,

Fiery Cushman ¢

2 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
b Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
¢ Department of Psychology, Harvard University, Cambridge, MA 02139, United States of America

ARTICLE INFO ABSTRACT

Dataset link: https://osf.io/et89w

Keywords:
Decision-making
Cognitive puzzles
Consideration
Machine learning

Humans are remarkably efficient at decision making, even in “open-ended” problems where the set of possible
actions is too large for exhaustive evaluation. Our success relies, in part, on processes for calling to mind the
right candidate actions. When these processes fail, the result is a kind of puzzle in which the value of a solution
would be obvious once it is considered, but never gets considered in the first place. Recently, machine learning
(ML) architectures have attained or even exceeded human performance on open-ended decision making tasks
such as playing chess and Go. We ask whether the broad architectural principles that underlie ML success in

these domains generate similar consideration failures to those observed in humans. We demonstrate a case in
which they do, illuminating how humans make open-ended decisions, how this relates to ML approaches to
similar problems, and how both architectures lead to characteristic patterns of success and failure.

1. Introduction

Many everyday decision making problems present too many possi-
ble solutions for exhaustive consideration: Imagine all the books we
could choose to read next; all the people we could spend a Sunday
afternoon with; all the different ways to express an idea. Fortunately,
when facing these kinds of open-ended problems, we efficiently call to
mind a small set of good candidates (Hauser, 2014; Morris, Phillips,
Huang, & Cushman, 2021; Nedungadi & Hutchinson, 1985; Phillips &
Cushman, 2017; Zhang et al., 2021). Indeed, efficient consideration of
promising options during decision-making is a cornerstone of human
intelligence (Phillips, Morris, & Cushman, 2019; Simon, 1955).

However, efficient consideration also generates characteristic er-
rors. In some cognitive puzzles, the correct solutions systematically fail
to come to mind (Batchelder & Alexander, 2012; Gilhooly & Murphy,
2005). For example, in chess, a novice player might not consider a
sequence of moves that requires sacrificing a valuable piece to guar-
antee a win later on. If such a solution were proposed to them, they
could understand why it is favorable. However, the cognitive puzzle
arises because the player does not ever consider the correct sequence
of moves in the first place. This kind of problem arises not only in
decision-making, of course, but also in many other tasks (Dasgupta,
Schulz, & Gershman, 2017) such as causal inference (Bramley & Xu,

* Corresponding author.

2023), theory learning (Ullman, Goodman, & Tenenbaum, 2012), and
reasoning (Wason, 1968).

Our goal is to better understand how people efficiently generate
candidate solutions to decision-making problems, and also how this
leads to predictable failures and puzzles. We focus on one element
of candidate generation in particular: Value generalization, or the
way that people rely on past experience of reward to predict which
candidate actions will be rewarding in the future. The key idea is
simple: If the necessary action to solve the current problem has been
assigned high heuristic value based on prior experience, it will come
quickly to mind. If not, the correct solution will evade consideration,
resulting in a cognitive puzzle. Since value generalization plays a key
role in contemporary machine learning (ML) architectures for choice,
our approach is to ask whether comparable patterns of success and
failure arise for humans and for a representative ML architecture.

1.1. Candidate generation by value generalization

There are many different ways in which people come to generate
candidate solutions to problems. We focus on one method in particular:
Generating candidates solutions to a current task by generalizing from
the solutions that proved valuable in similar contexts in the past (John-
son & Raab, 2003; Kaiser et al., 2013; Klein, 1993; Morris et al., 2021;

E-mail addresses: alice.zhang@psy.ox.ac.uk (A. Zhang), maxlangenkamp@me.com (M. Langenkamp), maxkw@uw.edu (M. Kleiman-Weiner),

toikarinen@ucsd.edu (T. Oikarinen), cushman@fas.harvard.edu (F. Cushman).

URLs: https://orcid.org/0009-0005-5037-0995 (A. Zhang), https://orcid.org/0000-0002-6929-9982 (F. Cushman).

https://doi.org/10.1016/j.cognition.2025.106108

Received 24 June 2024; Received in revised form 25 February 2025; Accepted 1 March 2025

Available online 13 March 2025

0010-0277/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cognit
https://www.elsevier.com/locate/cognit
https://orcid.org/0009-0005-5037-0995
https://orcid.org/0000-0002-6067-3659
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
mailto:alice.zhang@psy.ox.ac.uk
mailto:maxlangenkamp@me.com
mailto:maxkw@uw.edu
mailto:toikarinen@ucsd.edu
mailto:cushman@fas.harvard.edu
https://orcid.org/0009-0005-5037-0995
https://orcid.org/0000-0002-6929-9982
https://doi.org/10.1016/j.cognition.2025.106108
https://doi.org/10.1016/j.cognition.2025.106108
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2025.106108&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Zhang et al.

Model-Free Selection of
Actions for Consideration

Model-Free

Current Convolutional Value Estimates

State Neural Net (CNN)

MDEMBEG)

”' Training: Optimal Solutions V

Cognition 259 (2025) 106108

Model-Based Evaluation
of Considered Actions

Rollout Revised
(High Value Actions Model-Based
Prioritized) Value Estimates
‘: ... 1 point

- : .. -2points
g ‘= = 1 point
'. _= - -2 points
=_= - 0 points
¥

_= ... -1 point

Fig. 1. In the family of ML planning architectures that inspired our approach, a model-free estimator guiding a model-based evaluator is able to efficiently solve open-ended
problems by preferentially evaluating actions with high estimated value. The model-free component is implemented by a Convolutional Neural Net (CNN) trained on optimal
solutions. The model-based component is implemented by Monte-Carlo rollout; in our case, First Visit Monte-Carlo. This motif of model-free value estimates guiding efficient

model-based evaluation is echoed in contemporary work on human planning.

Peters, Fellows, & Sheldon, 2017; Zhang et al., 2021). For instance,
suppose that a person is trying to generate candidate chess moves in
a position they have never played before. The moves that come to
mind might be generalized from those that proved useful in similar
past games. Or, suppose that person is trying to generate some options
to cook for a dinner party on a generous budget but a short time-
frame; the dishes that come to might mind be those that worked well
under similar constraints in the past. The key advantage of generalizing
from past cases is that it can be computationally frugal, helping people
to make good decisions under resource constraint (Lieder, Griffiths, &
Hsu, 2018; Simon, 1955). In the language of reinforcement learning,
generalizing from the solutions that worked in the past is a form of
“model free” solution.

Once a small set of good candidate options has been generated,
however, it is feasible to apply more computationally demanding meth-
ods to refine the value estimates of each of them and choose the best.
For instance, the chess player who has called to mind candidate moves
might evaluate them by simulating the future states of the board that
would likely arise, based on their knowledge of the rules of the game
and the likely moves of their opponent. Or, the cook who has called
to mind several candidate dishes might evaluate them by considering
how much their guests would appreciate them, how difficult they
would be to make, etc., given their knowledge of the situation. In the
language of reinforcement learning, this method of value estimation
is “model-based”, because it derives a value estimate from a model
of the causal dynamics of the environment. And, indeed, people often
evaluate candidate actions by model-based methods (Dolan & Dayan,
2013).

It is not surprising that different methods of evaluation are favored
for distinct stages of the decision-making process (i.e., option gen-
eration versus selection). The problems presented by each stage are
distinct and, in general, we should expect different kinds of algorithms
to be favored for different kinds of optimization problem (Wolpert &
Macready, 1997).

In summary, then, existing evidence suggests that when faced with
open-ended problems people sometimes use distinct mechanisms to
generate candidates and to evaluate those candidates. In these cases,
generation depends on fast-and-frugal model-free methods, while eval-
uation depends on effortful but more accurate model-based mecha-
nisms (Hauser & Wernerfelt, 1990; Kalis, Kaiser, & Mojzisch, 2013;
Morris et al., 2021). Similar heuristic methods of option generation (or
hypothesis generation) have been considered for other kinds of tasks,
such as learning causal models or theories (Zhao, Lucas, & Bramley,
2024). This is what gives rise to the failures of consideration char-
acteristic of certain puzzles. Model-free mechanisms may assign low
value to the correct answer, making it unlikely to come to mind; yet,

model-based processes may be able to quickly and decisively recognize
the value of those solutions if only they came to mind. We interrogate
cognitive puzzles of this kind.

1.2. Machine learning model of value function approximation

Recently, machine learning architectures have achieved perfor-
mance on par with human experts in several open-ended problems
such as the games of chess and Go (Silver et al., 2018). These suc-
cesses depend in part on an architectural motif that efficiently selects
candidate actions for consideration and further evaluation by using
heuristic value estimates based on past experience. As we have seen,
this motif parallels some current models of how humans generate
efficient consideration sets. We therefore ask whether it can be used to
understand not only the shared successes of human and ML planning,
but also their characteristic failures of consideration.

Specifically, several recent ML algorithms exhibiting excellent per-
formance in open-ended problems, such as AlphaGo and its descen-
dants, rely on common architectural principles (Fig. 1). Specific se-
quences of candidate actions are evaluated by simulating their likely
consequences, a model-based method of evaluation sometimes called
roll-out or tree search. In open-ended problems there are, however,
too many action sequences for exhaustive consideration. A key in-
novation addresses this problem by guiding tree search towards the
most promising candidates based on a heuristic estimate related to
their value. This estimate is furnished by a myopic neural net trained
on previously played or observed games, a model-free method. Since
players encounter novel circumstances — states of the game that have
never before been observed — the network must generalize from
past experience. In this manner, the neural network efficiently guides
model-based roll-outs towards promising candidates. In sum, this ar-
chitecture employs computationally cheap but imprecise model-free
estimates of value generate a feasible set of actions for consideration,
and then devotes computationally expensive and precise model-based
estimates of value to the promising candidates within this set.

This suggests a potential high-level correspondence between human
and machine approaches to open-ended decision problems, although
the precise implementations surely differ in their details. One obvious
approach to establishing correspondence between humans and ML
methods is to see whether they show comparable areas of success.
Our experiments provide this kind of evidence. Yet, our main focus
is not areas of shared success, but rather on a common pattern of
failures. After all, starkly different algorithms can be used to arrive at
the same successful solutions. Often, an algorithm’s most distinctive
fingerprint is instead its pattern of failures (Saxe, 2005). In order
to elicit failures, we designed a task for which we expected certain
solutions to systematically evade consideration, whether by humans or
machine planners.

A. Zhang et al.
1.3. A sequential planning task to elicit failures of consideration

We designed a sequential decision-making task of the kind that
the relevant ML architectures are optimized to solve. Specifically, we
designed a gridworld game in which an agent can move valuable
objects onto target locations to earn points. We described these objects
to humans as cargo, and the setting as a train yard. The grid also
contained trains (autonomous moving objects that destroy any objects
they hit, resulting in a loss of points and bringing the train to a stop)
and switches (which change the direction of motion of the trains).

We trained humans and an ML planning architecture on a set of
grids comprising several mundane types, such as moving cargo onto its
target location (“Push Control” cases), or flipping a switch to redirect
a train away from valuable cargo (“Switch Control” cases), among
others (Fig. 2). Reflecting the underlying structure of the problem,
these training cases often present situations in which a train is heading
towards valuable cargo and flipping a switch to redirect the train saves
it. And, they often present situations in which a train is not heading
towards valuable cargo, and to push that cargo in the way of the train
would be costly and pointless. Crucially, however, our training regime
omitted two particular types of configuration that would rarely arise
naturally. In the first (“Switch Sacrifice” cases), the optimal action is to
redirect the train away from collision with a high-value object such that
it unavoidably collides with a low-value object. In the second (“Push
Sacrifice” cases), the optimal action is to push a low value object into
the path of the train in order to stop it, thus preventing it from hitting
a high-value object.

To preview our results, both humans and the ML planner reliably
identified the optimal solution to Switch Sacrifice cases, but often failed
on Push Sacrifice cases. This occurs despite the fact that the potential
outcomes for both types of case are equated, and despite the fact that
neither type of case is present in training. Our findings suggest that this
occurs because, based on training, switching a train away from cargo
is heuristically estimated to have high value, while pushing cargo into
the path of a train is heuristically estimated to have low value. Because
these heuristic value estimates govern which actions get evaluated, the
optimal action is quickly discovered in Switch Sacrifice cases but not
in Push Sacrifice cases.

Against this background, we use a variety of manipulations to
establish the robust correspondence between the performance of the
ML architecture and the performance of human participants. We also
take advantage of the in silico nature of the computational architec-
ture to interrogate the precise causes of the characteristic failures of
consideration it shares with human participants.

Relationship to the trolley problem

Our task bears an obvious resemblance to the well-studied “trolley
problem” (Foot, 1967; Greene, 2014), and was inspired by it. But, it
also differs from the trolley problem in two very important ways. First,
it does not pose a moral dilemma: The objects in question are merely
cargo, not people. We have no reason to believe that participants
viewed any of the tasks we presented as presenting moral dilemmas.
Second, our data suggest that participants do not consider and then
reject the possibility of pushing cargo in front of a train; rather, they
fail to consider the action in the first place. Thus, our “trolley puzzle” is
quite different from the classic trolley problem, in which harm to people
is considered and then rejected on moral grounds. In the discussion,
however, we return to consider ways in which these two distinct
phenomena may nevertheless be related.

2. General methods

We asked participants to solve a series of railway operations prob-
lems in a stylized grid (or “gridworld”; Fig. 2). These were structured
as finite Markov decision processes—the kinds of problems to which
standard reinforcement learning mechanisms are well suited. Partici-
pants’ objective was to maximize points by pushing cargo onto target

Cognition 259 (2025) 106108

[}
@ S | [}
Q &
= e 5)
3 d »
4] o ..‘ Agent
& e g B
=] = = Switch
g ss = 2|
=== Train
° 8 s
S g $ 88 Cargo
£ <8 5 Ly
g o Targets
&) 5
& | 2
= zxmy ; = $
a = @0 =

Fig. 2. Example starting state and optimal solution for each test case type in our
task. Points are earned when cargo are pushed onto their targets and points are lost
when the train collides with cargo. Push Sacrifice and Switch Sacrifice cases favor the
sacrifice of the lower value cargo in order to prevent the train from colliding with the
higher value cargo. Push Control and Switch Control cases favor pushing cargo onto
their target locations and hitting the switch to prevent collisions, respectively. Control
cases were among the categories featured in training, and were also included at test.
Push Sacrifice and Switch Sacrifice cases were omitted from training and presented
exclusively at test.

locations, earning two points for high value cargo and one point for
low value cargo, while avoiding collisions with the train. A train
moved across the screen in a straight line, one grid cell per time step,
unless the participant flipped a switch to turn it 90° counterclockwise.
The participant lost points in the event of a train collision: one for
low value cargo, two for high value cargo, and four for a collision
with themselves. Collisions always stopped the motion of the train.
Participants performed a sequence of five actions by moving in any
cardinal direction or standing still.

Participants completed a training phase comprising four problem-
types, but omitting the Switch Sacrifice and Push Sacrifice cases. Specif-
ically, training included Push Control cases that favored pushing ob-
ject(s) into their target locations (47%), Switch Control cases that
favored redirecting the train away from an object collision (25%),
“Push Away” cases that favored pushing an object out of the path of the
train (20%), and “Do Nothing” cases where nothing could be done to
prevent an object collision (8%). Grids of each type were procedurally
generated by randomly setting the starting positions of key items within
a set of constraints (see SI).

Then, during the test phase, we presented participants with Push
Sacrifice and Switch Sacrifice cases for the first time, as well as novel
instances of the Switch Control and Push Control types seen in training.
In order to standardize the comparison of participant scores across
distinct categories of test grids we constructed all test grids so that the
minimum and maximum attainable scores differed by exactly one point.
Then, we standardized participant scores to range (0, 1) by subtracting
the grid-specific minimum attainable score.

All studies were approved by the Institutional Review Board and
performed with participants’ informed consent. Participants were re-
cruited from Amazon MTurk through CloudResearch and paid for
their participation. All study materials, code, and analysis scripts are
available at https://osf.io/et89w.

2.1. Experiment 1: Eliciting failures of consideration

The goal of Experiment 1 was to characterize overall patterns of
failure and success across different types of test trials. Although all test
trials were novel in their particulars, recall that two classes of test trial
were represented in training (Push Control and Switch Control), and
two classes were not (Push Sacrifice and Switch Sacrifice).

Naturally, participants might more easily solve the types of cases
represented in training, compared to the types unrepresented in train-
ing. Our focus, however, is on a comparison between the two types

https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w

A. Zhang et al.

A. Experiment 1:
Effect of first insight

I
)

o
3

Grid Type
I Switch Control
I Fush Control

I Push Sacrifice
I switch Sacrifice

o
@

o
o

°
o

o
kS

°

Standardized Score
S

o
N
°
o

Estimated Marginal Means
of Standardized Score

o

Pre Post
Insight Insight

Pre Post

insight Insight
Condition

o

0.0

sh®

K

Cognition 259 (2025) 106108

C. Experiment 3:
Effect of training

B. Experiment 2:
Effect of time pressure

s =
'S o

Standardized Score
o
N

0.0+

Training No Training No

ol

g
0;"35 0';@‘1" o:“’“’ Training Training
Condition Condition

shs®

Fig. 3. Behavioral results for Experiments 1-3. Error bars represent the standard error of the mean (SEM). A. Push Sacrifice cases elicit worse performance overall but, uniquely,
relative improvement following the first success. Pre-insight refers to all trials up to and including the first success on that problem type. Post-insight refers to all trials thereafter.
B. Time pressure impaired performance especially for Push Sacrifice cases. C. Training experience improved scores on Switch Sacrifice cases but not on Push Sacrifice cases.

cases not represented in training. Specifically, we ask whether either
of these classes, Switch Sacrifice and Push Sacrifice cases, reliably
elicited failures, presumably because participants fail to even consider
the highest-scoring solution in the first place. We assessed this in two
ways. First, we simply measured overall levels of success vs. failure
on these items. Obviously a case does not reliably elicit consideration
failures if participants do not exhibit many failures at all.

Second, we asked whether participants showed evidence of a dis-
continuity in performance following their first success—in other words,
having solved a particular class of problem once, do they become
notably more likely to solve it correctly thereafter? This pattern would
be consistent with the idea that once participants first appreciate the
utility of the action in question (a sacrificing switch, or a sacrificing
push), this candidate solution becomes more cognitively available in
future problems of the same type.

2.1.1. Methods

After several pilot studies of the paradigm, we preregistered our
experiment and analyses at aspredicted.org/GCL_1KQ. Of 364 partici-
pants, 109 were excluded for failing to complete all assigned rounds or
scoring less than zero points cumulatively in training. The rules of the
game were provided in an extensive, interactive training procedure to
all participants. All subjects completed 60 training rounds, followed by
50 test rounds. The 50 test rounds consisted of eight of each grid-type
of interest (Push Sacrifice, Switch Sacrifice, Push Control, and Switch
Control) and 18 filler grids drawn from the training distribution. All
test grids were performed under a 7 s time delay to ensure full task
engagement.

2.1.2. Results

Participants performed well on problems during the training phase,
achieving an average accuracy of 77.3% (SEM = 0.5%, see SI figure for
learning during training trials).

At test, participants performed optimally on most control cases
of the types included in training (Push Control: M = 94.0%, SEM =
0.5%; Switch Control: M = 96.0%, SEM = 0.4%). Notably, they also
did so similarly on the novel type of Switch Sacrifice cases (M =
94.5%, SEM = 0.5%). However, they were less likely to have optimally
solved the novel type of Push Sacrifice cases (M = 62.5%, SEM =
1.1%). These data offer some preliminary support for the conclusion
that Push Sacrifice cases uniquely elicit consideration failures, on the
assumption that participants who successfully consider push option in
these cases will take it, since it is the best option—and, thus, that
failures to take this option stem for a failure to consider it in the first
place. To provide further support for this inference, we fit a series
of preregistered linear mixed models, separately for Switch Sacrifice
cases and for Push Sacrifice cases, that predicted standardized scores on
these test items with one term capturing linear improvement over the
test block and a second term capturing a discontinuity in performance
following the first correct answer. Put simply, these models ask: “Does
the experience of solving the very first problem of a certain class
increase the likelihood of solving subsequent ones?” The estimated

marginal means from the full model indicate that, after participants
successfully solved their first Push Sacrifice case, they became 12.8%
(95% CI [7.0%,18.6%]) more likely to successfully solve subsequent
Push Sacrifice cases. An ANOVA comparing a model with and without
a term for discontinuity after first success revealed a significant effect
(x%(1) = 18.55, p < .001). No such effect was evident in Switch Sacrifice
cases, y%(1) = 0.02, p = .89. In the full model for Switch Sacrifice cases,
the estimated effect size was b = 0.00,95% CI [—-0.037,0.032]. Additional
details in SI, see Fig. 3A.

Why might Push Sacrifice cases uniquely elicit failures of consider-
ation? We suggest that this may be because the problems presented in
training generalize poorly to Push Sacrifice cases and bias consideration
away from the optimal action sequence. One early hint to support this
idea is that exposure to Push Sacrifice cases over the course of the test
phase led to improved performance on this case type (see SI Fig S2).
In an exploratory analysis, we find that performance on Push Sacrifice
cases improves linearly with increasing experience over the course of
the test phase. An ANOVA comparing a model with and without a
term for linear improvement in training revealed a significant effect
72(1) = 167.96, p < .001. The effect size for this term in the full model
(including a term for linear improvement and a term for discontinuity
after first success) was b = 0.034,95% CI [0.024,0.044]. The same is not
true for Switch Sacrifice cases. An ANOVA comparing a model with
and without a term for linear improvement in training did not reveal
a significant effect, y2(1) = .33,p = .57. The effect size for the linear
improvement term in the full model was » = 0.00,95% CI [—0.006, 0.004].
This is consistent with the idea that prior experience influences the
solutions that later come to mind. We further explore the effect of
training experience and provide evidence for this idea in Experiment
3.

In Experiment 1, we show that Push Sacrifice cases present a unique
challenge for participants. It seems that, by default, participants often
fail to consider solutions in which one uses a less costly collision to pre-
vent a more costly one. Once they “see” the possibility of this solution,
however, it becomes relatively more available in subsequent problems
of the same type. Our next experiments further explore the possibility
that Push Sacrifice cases elicit uniquely potent failures of consideration.

2.2. Experiment 2: Manipulating deliberation time

Logically, failures of consideration will arise the most often when
the fewest number of items is considered. (After all, if all possible
candidates are considered, no failure of consideration is possible—any
failure would be due to the process of evaluating candidates). Prior
research indicates that the more time people have to solve a problem,
the more candidate solutions they evaluate, all else being equal (Morris
et al.,, 2021). Thus, we reasoned that restricting participants’ time
budget — and thus limiting the number of items they could consider
— would selectively exacerbate failures of consideration.

Experiment 2 therefore extended the basic design of Experiment
1 to conditions of time pressure versus time delay. We reasoned that

A. Zhang et al.

suboptimal performance due to a failure of consideration would be
sensitive to this manipulation. In contrast, alternative explanations
for suboptimal performance (e.g., an unwillingness to “sacrifice” one
object for another, or a misunderstanding of the rules or scoring of the
task) would not be sensitive to this manipulation.

2.2.1. Methods

We preregistered our experiment and analyses at aspredicted.org/Q
TQ_ESN. Of 200 participants, 64 were excluded for failing to complete
all assigned rounds, timing out in more than six rounds in the “time
pressure” condition, or scoring less than zero points in training. Partic-
ipants were randomly assigned to the “time pressure” condition (limit
of 7 s to complete each test round) or the “time delay” condition (wait
7 s before taking first action). Under time pressure, not completing the
round in time results in a four point penalty.

2.2.2. Results

Again, participants performed well on problems during the training
phase, achieving an average accuracy of 80.0% (SEM = 0.7%, see SI
figure for learning during training trials).

At test, we analyzed the effect of time pressure versus time delay
on performance for each of our test grid types of interest. Under time
pressure, when we expect constraints on consideration to be most
applicable, participants solved a smaller proportion of Push Sacrifice
cases (M = 36.9%, SEM = 1.4%; see Fig. 3B) than Switch Sacrifice
cases (M = 84.3%, SEM = 2.4%), Push Control cases (M = 90.2%,
SEM = 2.0%), or Switch Control cases (M = 87.6%, SEM = 0.8%).
Additionally, imposing a time delay prompted a greater improvement
in performance on Push Sacrifice cases (M = 59.7%, SEM = 1.5%) than
the remaining three types of cases (Switch Sacrifice: M = 96.3%, SEM
= 1.7%; Push Control: M = 93.8%, SEM = 0.8%; Switch Control: M
= 95.5%, SEM = 0.5%). This suggests that Push Sacrifice cases elicit
uniquely large consideration failures in our task. We fit a series of
preregistered linear mixed models that predicted standardized scores
using the Ime4 package in R to test several contrasts of interest (see SI
for details). An ANOVA comparing a model with and without a term for
time constraint revealed a significant effect across all grid types, y2(1) =
20.45, p < .001. In the full model including terms for time constraint,
test grid type (Switch Sacrifice vs Push Sacrifice), and their interaction,
the effect size for time constraint was b = 0.11,95% CI [0.07,0.16].
Model comparison additionally revealed significantly higher scores for
Switch Sacrifice than for Push Sacrifice cases, y2(1) = 20.03, p < .001
(effect size from full model, b = —-0.42,95% CI [-0.55,-0.29]), and a
significant interaction such that the effect of time delay versus time
pressure was greater for Push Sacrifice cases than for Switch Sacrifice
cases y2(1) = 6.65, p = .01 (effect size from full model, b = 0.11,95% CI
[0.03,0.19]).

In summary, time pressure exerts a uniquely large effect on Push
Sacrifice cases, supporting the conclusion that these are especially
susceptible to failures of consideration.

2.3. Experiment 3: Manipulating training

Why would Push Sacrifice cases be especially likely to elicit failures
of consideration, compared with Switch Sacrifice cases? Potentially,
this occurs because of the way that participants generalize from training
cases (which include neither Push Sacrifice nor Switch Sacrifice cases)
to the novel test cases. During training, participants encounter cases
in which switching a train away from cargo is the best action overall.
(These cases differ from our test Switch Sacrifice cases because they
do not involve sacrificing a low value piece of cargo for a high value
piece). This may lead them to assign a high heuristic value estimate
to the action of switching trains away from cargo, and thus lead them
to often spontaneously consider switch actions in novel situations. As
a result, failures of consideration are infrequent. In contrast, during
training, participants encounter cases in which pushing cargo into the

Cognition 259 (2025) 106108

path of a train is not the optimal action (These cases differ from our
test Push Sacrifice cases because they do not use the destruction of a
low-value piece of cargo to prevent the destruction of a higher-value
piece). This may lead them to assign a low heuristic value estimate
to the action of pushing cargo in front of trains, and thus lead them
to rarely spontaneously consider push actions in novel situations. As a
result, failures of consideration are more frequent.

Thus, Experiment 3 contrasted a “training” condition, where par-
ticipants complete the training phase as normal, and a “no training”
condition where participants complete the test phase directly after the
task instructions. All participants completed the task under time pres-
sure, where failures of consideration are most evident. We predicted
that, while training might enhance performance overall by increasing
task familiarity, it would do more to enhance performance on test
Switch Sacrifice cases than on test Push Sacrifice cases. Indeed, in
theory, it might even impair performance on test Push Sacrifice cases.

2.3.1. Methods

We preregistered our experiment and analyses at aspredicted.org/KL
2_CTC. Of 600 participants, 202 were excluded for failing to complete
all assigned rounds, timing out more than six times, timing out more
than twice on either test case type of interest, or scoring less than
—35 points at test. Participants were randomly assigned to either the
“training” or “no-training” condition. During the test phase, all subjects
were placed under time pressure with a 7 s time limit. Each participant
completed 24 test grids, consisting of three Push Sacrifice grids, three
Switch Sacrifice grids, and twelve filler grids drawn from the training
distribution. This reduction in number of test grids of interest was made
in order to reduce the effect of learning from Push Sacrifice and Switch
Sacrifice experiences during test.

2.3.2. Results

In Experiment 3, participants who were assigned to the training
condition performed well on problems in the training phase, achieving
an average accuracy of 71.8% (SEM = 0.9%, see SI figure for learning
during training trials).

As expected, training had differential effects on performance for
Switch Sacrifice and Push Sacrifice cases at test. The inclusion of train-
ing had little effect on participants’ scores in Push Sacrifice cases (with
training: M = 17.4%, SEM = 1.8%; without training M = 15.6%, SEM
= 2.3%) (Fig. 3C). For Switch Sacrifice cases, however, participants
performed significantly worse without training (M = 53.1%, SEM =
1.5%), than with training (M = 66.0%, SEM = 1.9%). We fit a series
of preregistered linear mixed models using the lme4 package in R
modeling standardized scores by case type (Push Sacrifice versus Switch
Sacrifice), training, and their interaction. Random effects in the final
model included grid ID and participant ID. An ANOVA comparing
a model with and without a term for training experience revealed
a significant effect of training y>(1) = 5.31, p = .02. In the full
model including terms for training experience, test grid type (Switch
Sacrifice vs Push Sacrifice), and their interaction, the effect size for
training experience was b = 0.07,95% CI [0.02, 0.12]. Model comparison
additionally revealed a significant effect of case type y2(1) = 26.50,
p < .001 (effect size from full model b = —0.43,95% CI [-0.55,-0.31]),
and a significant interaction between training experience and case type
72(1) = 453, p = .03 (effect size from full model b = —0.11,95% CI
[-0.22,-0.01]).

The differential effect of training provides some indication that
heuristic value estimates derived from training support success on
switch trials, but do not support success for Push Sacrifice trials.

A. Zhang et al.

3. ML planning architecture and experiments

Next we explored whether similar patterns of performance arise if
we attempt to solve our task using an architectural motif behind recent
advances in machine decision-making in open-ended problems. Our
goal was to adopt methods that are broadly representative of one family
of current approaches, not to introduce ad hoc innovations. In other
words, our aim is to ask, “what happens when model-based planning
cannot evaluate all possible actions, and thus prioritizes search based
on a heuristic estimate of value generalized from past experience?”

We expected that, like our human participants, models from this
family would fall prey to failures of consideration on Push Sacrifice
problems but not Switch Sacrifice problems. This is because we ex-
pect heuristic value estimation to over-estimate the value of switching
actions (which saves points at no cost in training, but saves points
at a cost in test), but to under-estimate the value of pushing actions
(which costs points without benefit in training, but cost points with
an overriding benefit in test). By overestimating the value of switch-
ing actions, subsequent model-based search will reliably evaluate the
candidate switching actions and discovers they are optimal (albeit at
a lower score than initially estimated). In contrast, by underestimating
the value of pushing actions, subsequent model-based search will often
fail to evaluate pushing actions, and therefore fail to discover that they
are optimal (obtaining a higher score than initially estimated).

We begin by describing the architecture in more detail, and then
report the results of in silico experiments designed to mirror those we
performed on humans.

3.1. Architectural details

Our architecture has two parts (Fig. 1): A neural net that ap-
proximates the state-action value function based on training, and a
model-based method for improving these value estimates by Monte
Carlo rollouts. The heuristic value estimates are used to prioritize
tree search (i.e., rollouts), directing model-based exploration towards
promising candidate actions.

3.1.1. Approximating the value function with a trained neural network

We constructed a simple Convolutional Neural Network (CNN; Le-
Cun, Bengio, & Hinton, 2015) that predicts the Q-values (Sutton &
Barto, 1998) for each available action (up, right, down, left, and stay)
given an input game state. The state input representation contains
information about the time step (1-5), the locations of all objects in
the grid, and the direction of the train. Put simply, the function of this
CNN is to generate a heuristic estimate of the value of each action by
generalizing from its experience during training. These value estimates
are used to guide the search for promising actions (see the next section:
Action evaluation and control...).

To train the CNN, we generated a set of potential inputs (200,000
grid problems from a fixed distribution) and outputs (optimal Q-values
derived from value iteration). CNN training grids were drawn from the
same distribution of problem types that was used to train participants
in the behavioral task. Then, for each grid, we identified the optimal
action sequence and associated set of states visited. These states, and
the optimal Q-values for each action in these states, comprised the
training inputs and outputs. (This parallels human experience during
training, in which 80% of human-generated action sequences were
optimal for those participants included in analysis.) See the supporting
information text for more details about the CNN architecture and
training.

Cognition 259 (2025) 106108

3.1.2. Action evaluation and control by first visit Monte Carlo

Our architecture next evaluated candidate actions by a standard
model-based method: First-Visit Monte Carlo (FVMC) (Sutton & Barto,
1998). This algorithm refines its policy over a series of iterations, where
each iteration involves simulating a full action sequence and updating
Q-values based on the simulated returns. A random simulation strategy
is shared by other Monte-Carlo methods, including Monte-Carlo tree
search which was featured in AlphaGo (Silver et al., 2018). However,
FVMC is best suited to our task, which has a fixed number of time steps
and wider range of possible outcomes. First-visit Monte Carlo computes
Q-values as the averaged returns following the first visit to a given
state. In our task, it is not possible to visit the same state twice in one
simulated trajectory, meaning that there is no meaningful distinction
between first-visit and every-visit algorithms. Exploration for FVMC
was determined by an e-greedy strategy with e = .2.

Crucially, we initialized the Q-values that guided FVMC using the
estimates from our trained CNN. In this manner the CNN guided
“consideration” of candidate actions, especially early in the process of
model-based evaluation (See SI for details). Put simply, the function
of the FVMC algorithm is to use its model of the task to determine the
precise consequences of taking various sequences of actions, in order to
guide choice. Determining which actions to evaluate, however, is guided
by the CNN described in the previous section (Approximating the value
function...).

3.2. In silico experiments

Next we asked whether this architecture generates the same patterns
of consideration failure observed in humans.

3.2.1. Model failures of consideration

First, we tested our architecture on the same novel grids that we
presented to humans. We predicted that, like humans in Experiment
1, it would exhibit especially poor performance on Push Sacrifice
cases, failing to identify the optimal action, relative to Switch Sacrifice
cases. As evident in Fig. 4A, the model consistently performs worse on
Push Sacrifice cases compared to other problem types like our human
participants.

Next, we fit our model to human data, comparing it with two
alternative models designed to reflect alternative cognitive hypotheses.
The first implements pure model-free control, in which value estimates
from a trained CNN directly determine action selection. The second
implements pure-model based control, in which a FVMC agent per-
forms rollouts without biasing exploration towards actions with high
estimated value. We compare these two models to our architecture in
which model-free value estimates guide the evaluation of candidate
action sequences.

We investigate how well each of these three models fits human be-
havior on Push Sacrifice and Switch Sacrifice cases in Experiment 1. To
do so, we fit each model to the data and compare the resulting Bayesian
Information Criterion (BIC) scores, which reflect the likelihood of the
data under each model while penalizing for model complexity.

In order to fit the models to human data we optimized each model’s
free parameters at the group level, i.e., applying the same parameter
settings to all participants in order to maximize the aggregate likeli-
hood of the data. We adopt this approach because the relatively small
number of observations per participant renders subject-level estimation
vulnerable to overfitting.

All three models involve a conversion of action value estimates to
choice probabilities by softmax with a free parameter f dictating the
balance between exploitation and exploration. For the models featuring
an FVMC component, we additionally fit the number of FVMC iterations
to run. For the CNN-only candidate model, we use bounded local
minimization to fit # (Brent, 1973; Grund, 1979). For our architecture
and the FMVC-only candidate model, we concurrently fit the number

A. Zhang et al.

Cognition 259 (2025) 106108

 — Manipulating training -/

A. Full model performance
(with CNN initialization)

0.0 v 0.0
.
/
-0.14

i -0.2

Grid Type ¢ o2 o

s

; g

B Push Sacrifice o _ A
372 o —0.4

Switch Sacrifice I g

T -0.4 o
= & -0.6

€ =05 °

=== Push Control s €

g a 2
= = Switch Control -0.6 B s

-0.7
-1.0
0 50 100 150 200 250

Number of Iterations
L Manipulating decision time .

B. Lesioned model performance
(without CNN initialization)

C. Training advantage
afforded by CNN

10

0.8

0.6

04

0.2

Standardized Score

0.0

-0.2

250 0 50 100 150 200
Number of Iterations

0 50 100 150 200 250

Number of Iterations

Fig. 4. In silico experiments with our model. The results in all figures are obtained by running each model at increments of 50 iterations, and averaging standardized scores

achieved over 500 runs. This is done to compute a stable value for standardized score, as each Monte Carlo rollout occurs with some degree of randomness. Points falling between
these increments are computed using PCHIP interpolation. Error bars are omitted as they are too small to be visible. Additionally, two specific problems (from the Push Control
category) are omitted from these visualizations because the FVMC algorithm takes notably more iterations to solve them correctly. This is done to present a clearer visual comparison
between problem types. However, we replicate the same pattern of model results when these are included (see SI Fig S3). A. Average standardized score of the ML architecture
as a function of the number of FVMC iterations, for each test trial type. Analogous to human performance on Push Sacrifice cases under time pressure, ML performance on push
cases is uniquely degraded at small numbers of iterations. B. Average standardized score of the ML architecture when removing the CNN component (no training experience). In
the lesioned model, performance on all four grid types improves similarly with increased model-based rollouts. C. Performance advantage afforded by a trained CNN as a function
of the number of FVMC iterations, for each test trial type. Values are computed as the difference between full model performance (4 A) and lesioned model performance (4B).
Analogous to human results, training experience induces a large performance advantage especially at a small number of iterations, for Switch Sacrifice cases but not for Push
Sacrifice cases. In fact, there is a performance decrement induced by training uniquely for Push Sacrifice cases. Fritsch and Butland (1984).

of FVMC iterations and the softmax temperature using Bayesian op-
timization with Gaussian processes (The scikit-optimize contributors,
2018). This optimization method was chosen because it is well suited
for optimizing stochastic and computationally expensive functions. See
SI for more details on parameter bounds and convergence.

Using this method, we find that our architecture (NLL = 23542.2,
BIC = 47104.2, p = 0.2, FVMC iterations = 6405) better accounts for
participant performance on Push Sacrifice and Switch Sacrifice test
cases than the CNN-only (NLL = 26156.9, BIC = 52323.6, § = 0.4)
and FVMC-only (NLL = 23629.5, BIC = 472789, § = 0.2, FVMC
iterations = 35016) models. By convention, the BIC advantage exceed-
ing 10 indicates strong evidence for our model compared with these
alternatives.

3.2.2. Manipulating “decision time”

In Experiment 2, we manipulated people’s decision time to show
that having more time to consider options improves performance more
on Push Sacrifice cases compared to Switch Sacrifice cases. In our
architecture, the “decision time” variable is analogous to the number
of candidate action sequences that FVMC is allowed to consider before
selecting the best-yet-considered as its final choice. In the language of
FVMC, the key variable is the number of “iterations”. We therefore
explored the effect of this parameter setting.

Fig. 4A shows the performance of our architecture on the four
different types of test cases as a function of the number of iterations.
As with humans under time pressure, when the number of iterations is
small, the model performs much worse on Push Sacrifice cases than the
other types of test case. As with humans under time delay, when the
number of iterations increases, this disparity is reduced.

We performed a model comparison to provide further evidence for
the correspondence between human thinking time and the number
of FVMC iterations in our model. Here, we compared two versions
of our proposed architecture: One that fits a single number of FVMC
iterations to both time-pressure and time-delay conditions, and another
that fits separate numbers of FVMC iterations to these two experi-
mental conditions. For both models, we concurrently fit an additional
free parameter for Softmax beta. As above, parameter estimation was
conducted at the group level. We find that a model that allows for
a different number of FVMC iterations in the time delay and time
pressure conditions fits human data better than a model with the same
number of FVMC iterations across conditions. The model that allows

FVMC iterations to differ across conditions (NLL = 13054.59, BIC =
26137.03, p = 0.23, Pressure FVMC iterations = 2822, Delay FVMC
iterations = 3892) has a Bayesian Information Criteria (BIC) advantage
of more than 10 compared with a model that does not (NLL = 13076.32,
BIC = 26171.2, § = 0.2, FVMC iterations = 2900), indicating strong
evidence by convention.

As predicted, in the better fitting model, the number of FVMC
iterations that best fits human choices under time pressure is lower than
that for human choices under time delay.

3.2.3. Manipulating training

Next, we asked how our architecture’s performance on the four
types of test case varies as a function of training. In this context, the
relevant training is encoded in the CNN that approximates the value
function. We therefore ask how performance on test cases changes if the
contribution of this CNN is removed. In the lesioned architecture, the
state—action value estimates that guide FVMC are therefore uniformly
initialized to zero. This manipulation of the architecture analogizes
to Experiment 3, in which participants either received 60 training
rounds or none. Of course, we assume that humans bring some relevant
experience to the task that allows them to approximate a value function
even in the absence of task-specific training. Thus, we might expect
differences in performance without training and in the magnitude of
the effect of training across humans versus Al

Comparison of panels A and B of Fig. 4 shows the differential effects
of training on Switch Sacrifice and Push Sacrifice trial performance.
In panel A, which shows performance (as a function of the number
of iterations) for the trained model, we see the characteristic pattern
where the model performs excellently on Switch Sacrifice cases and
poorly on Push Sacrifice cases, especially with a low number of iter-
ations. In contrast, Panel B shows the results with a lesioned model
that does not benefit from any training. Here, we see that without
CNN training, the lesioned model does not demonstrate failures of
consideration on Push Sacrifice cases. This does not fully capture the
behavior of our human participants without training, however. As we
have noted, this discrepancy may be a result of the prior experience
our human participants likely bring to the task.

To better visualize the “training advantage” (or disadvantage), we
plot the difference in average standardized scores obtained by the full
architecture and the lesioned one, as a function of both test case type
and the number of FVMC iterations. This is shown in Panel C of Fig.

A. Zhang et al.

0.25
0.00 —_— 1
-0.25

-0.50

Error in CNN Value Estimate

-0.75

-1.00

Push Sacrifice Switch Sacrifice Switch Control Push Control
Grid Type

Fig. 5. An analysis of the CNN’s value estimates for the key action of interest (pushing
cargo or hitting the switch) for each test type. For the test types included in training
(Push Control and Switch Control) value estimates are unbiased. For the test types not
included in training value estimates are biased, but in opposite directions: Upwards for
Switch Sacrifice cases, and downwards for Push Sacrifice cases.

4. We find that training generates a performance advantage on Switch
Sacrifice, Switch Control, and Push Control cases. This aligns with
the results of our human experiment, where training trials tended to
improve performance on the same types of cases. In contrast, we find
that training interferes with model performance on Push Sacrifice cases.
This partially aligns with the results of our human experiment, where
training trials provided no benefit in Push Sacrifice cases but did not
interfere, either.

3.2.4. Interrogating value function generalization

We have proposed that both humans and our ML architecture fail
to consider the optimal action in Push Sacrifice cases because their
heuristic value estimates systematically underestimate the value of
pushing an object into the path of a train. In the case of our ML
architecture we can explore these value estimates directly. To do so,
we computed the average signed error in value estimates generated
by our trained CNN for the key action in each category of test case:
Pushing an object into the path of the train (for Push Sacrifice cases),
redirecting the train away from one object and towards another (for
Switch Sacrifice cases), redirecting the train safely (for Switch Control
cases), and pushing the object onto the target location (for Push Control
cases). We did this for all of the test cases used in our human and in
silico experiments (Fig. 5)

As expected, the CNN systematically underestimates the value of
the optimal action in Push Sacrifice cases (a class on which it was not
trained), while it exhibits no meaningful bias in Switch Control and
Push Control cases (classes on which it was trained). Notably, however,
the CNN also exhibits systematic error in its value estimate of the
Switch Sacrifice cases. This is not unexpected, since Switch Sacrifice
cases were not included in the training set. But, of course, we find
that neither humans nor our ML architecture have much difficulty
identifying the optimal solution for Switch Sacrifice cases. This is
presumably because of the sign of the bias. In Switch Sacrifice cases
value is overestimated (reflecting a training set in which switching the
train often saves some cargo without causing harm to other cargo). This
leads to model-based evaluation of the optimal action early, ensuring
its proper consideration. In Push Sacrifice cases, value is instead un-
derestimated (reflecting a training set in which pushing cargo into a
train harms that cargo without saving any other cargo). This inhibits
model-based evaluation of the optimal action, leading to a systematic
failure of consideration.

4. Discussion
We generated a set of sequential decision-making problems to be

solved by humans and an ML planning architecture. We find that the
same class of problems that reliably generate failures of consideration

Cognition 259 (2025) 106108

in humans also generates failures in our ML planner. This suggests
an intriguing correspondence between the broad organizational ar-
chitecture of human and machine approaches to decision-making in
open-ended problems.

Three similarities characterized human and machine planners. First,
both performed worse on Push Sacrifice than Switch Sacrifice cases.
Second, this performance decrement was especially pronounced when
time devoted to model-based evaluation was limited and, therefore,
the initial value estimates used to determine consideration presumably
played their greatest role. Third, training improved out-of-sample per-
formance on Switch Sacrifice cases but failed to improve (in humans) or
actually inhibited (in ML) out-of-sample performance on Push Sacrifice
cases.

Interrogating our ML planning architecture, it is clear why Push
Sacrifice cases elicited consideration failures. The architecture prior-
itizes evaluation of candidate actions that are assigned high value
estimates by a neural net. The neural net must generalize from training
to novel types of cases in which low-value cargo must be destroyed in
order to save high-value cargo. We find that the neural net provides
biased value estimates across both Switch Sacrifice cases and Push
Sacrifice cases, but in opposite directions: It overestimates the value
of switch actions, but underestimates the value of push actions. As a
consequence, it quickly evaluates the switch actions and discovers that,
while less valuable than expected, they are better than the alternatives.
In contrast, it inhibits evaluation of push actions and therefore fails to
discover that they, too, are better than the alternatives. The result is a
cognitive puzzle specific to Push Sacrifice cases.

The qualitative similarities between human and ML performance
suggest that they may employ broadly similar approaches to choice in
this task: Consideration of candidate actions generated by a statistical
approximation of the value-function trained on prior experience in
related tasks, followed by refinement of those value estimates via
model-based rollout. This is consistent with existing work on how
people use value-based methods to solve certain open-ended prob-
lems (Hauser & Wernerfelt, 1990; Morris et al., 2021). Our findings
suggest that participants do not rely exclusively on model-based eval-
uation, unguided by any heuristic estimate of the value of considering
different sequences of actions. Such a model could not explain why
participants are far more adept at finding the solution to switch cases
than push cases, or why they show selective effects of training and
learning for push cases. Moreover, when we fit participant behavior
to an architecture that uses model-based methods only, it significantly
underperforms the hybrid, two-stage architecture.

Alternatively, is it possible that when participants failed to select
optimal sequence of actions, they actually considered those sequences,
but underestimated their value based on a heuristic, model-free mech-
anism? Although possible, several factors suggest this is not likely.
The structure of our task — simple, intuitive, and deterministic —
means that the true (model-based) value of a sequence of actions is
obvious as soon as you consider it. For instance, the optimal sequence
in push cases avoids hitting the high value target, and no other se-
quence achieves this. It thus seems unlikely that a participant would
consider this sequence of actions and then reject on the grounds that
its model-free value is low. Further evidence against this possibility
again comes from our model fitting: We find that a model-free-only
architecture does worse than our proposed hybrid two-stage archi-
tecture. Of course, other architectures might be entertained, perhaps
incorporating promising insights from prior research (Huys et al., 2012;
Keramati, Smittenaar, Dolan, & Dayan, 2016), and these remain for
future research to explore.

To the extent that human and ML performance align, we suggest
that it is for two reasons: one about the structure of experience,
and another about the structure of planning. First, like our model,
humans experience many situations in which it makes sense to avoid
collisions to prevent harm, and few situations in which it makes sense to
cause collisions to prevent greater harm. Second, statistical approaches

A. Zhang et al.

to value estimation may be biased when generalizing to new case
types and, when these heuristic value estimates are used to guide
consideration, this will lead to planning failures.

Of course, there are several ways in which human performance
likely diverges from our ML planning architecture in its details. We
designed our CNN to be representative of standard approaches in
contemporary machine learning, but we do not assume, nor does our
data imply, any strong correspondence between the construction of the
CNN and the neural mechanisms that humans use to approximate a
value function in our task. Moreover, humans’ heuristic value estimates
are likely guided by a wealth of experience and structured knowledge
(e.g., about trains, cargo, etc.) that go well beyond the specific instruc-
tions and training that we provided in the context of our experiment.
Indeed, we know from existing work that insight can be guided not
just by the kinds of value representations we interrogate here but also
by semantic structures (Nedungadi & Hutchinson, 1985; Zhang et al.,
2021) and, in particular, from conceptual restructuring (Batchelder &
Alexander, 2012; Gilhooly & Murphy, 2005). It remains to future work
to explore whether, and how, these more structured representations
might be incorporated into the kind of ML framework employed here.
A conceptual restructuring of this kind might play an important part
in explaining why, once humans solved their first push-type case, they
became relatively more likely to solve subsequent cases. (An effect of
this kind was foreclosed in principle for our ML architecture, since no
experiences during the test phase were used to retrain the CNN).

Our task resembles the famous “trolley problem” (Foot, 1967;
Greene, 2014). Unlike the real trolley problem, however, in our “trolley
puzzle” participants are unlikely to have conceived of cargo operations
in moral terms, and our ML architecture was not designed for moral
evaluation. Also, the trolley problem has not traditionally been used
to demonstrate a failure to consider sacrificial harm, but instead the
judgment that it is wrong. Nevertheless, the same kinds of mechanisms
that furnish model-free value estimates guiding option consideration
in our puzzle could potentially play a parallel role in certain forms of
moral evaluation, as has been suggested elsewhere (Crockett, 2013;
Cushman, 2013; Phillips & Cushman, 2017). This deserves further
study.

Currently, humans are unparalleled in their capacity for intelligent,
creative thought, and yet we are also prone to certain startling and
predictable failures. Recent advances in ML have begun to carve away
selected domains where human performance can be matched, or even
exceeded. Presumably some ML architectures have close human paral-
lels and other do not. Here, focusing on a case of apparent alignment,
we show that human and machine planning is characterized not just by
the same dazzling successes, but also by the same failures.

CRediT authorship contribution statement

Alice Zhang: Writing — review & editing, Writing — original draft,
Software, Investigation, Formal analysis, Conceptualization. Max Lan-
genkamp: Software, Investigation, Formal analysis, Conceptualization.
Max Kleiman-Weiner: Conceptualization. Tuomas Oikarinen: Soft-
ware, Investigation. Fiery Cushman: Writing — review & editing, Writ-
ing - original draft, Supervision, Funding acquisition, Formal analysis,
Conceptualization.

Acknowledgments

This work was supported by grants N000141912205 and
N000142212205 from the Office of Naval Research, United States.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cognition.2025.106108.

Cognition 259 (2025) 106108
Data availability

All study materials, code, and analysis scripts are available at https:
//osf.io/et89w.

References

Batchelder, William H., & Alexander, Gregory E. (2012). Insight problem solving: A
critical examination of the possibility of formal theory. The Journal of Problem
Solving, 5(1), 6.

Bramley, Neil R., & Xu, Fei (2023). Active inductive inference in children and adults:
A constructivist perspective. Cognition, 238, Article 105471.

Brent, Richard P. (1973). Algorithms for minimization without derivatives (1st ed.).
Englewood Cliffs, New Jersey: Prentice-Hall.

Crockett, Molly J. (2013). Models of morality. Trends in Cognitive Sciences, 17(8),
363-366.

Cushman, Fiery (2013). Action, outcome, and value: A dual-system framework for
morality. Personality and Social Psychology Review, 17(3), 273-292.

Dasgupta, Ishita, Schulz, Eric, & Gershman, Samuel J. (2017). Where do hypotheses
come from? Cognitive Psychology, 96, 1-25.

Dolan, Ray J., & Dayan, Peter (2013). Goals and habits in the brain. Neuron, 80(2),
312-325.

Foot, Philippa (1967). The problem of abortion and the doctrine of the double effect.

Fritsch, F. N., & Butland, J. (1984). A method for constructing local monotone
piecewise cubic interpolants. SIAM Journal on Scientific and Statistical Computing,
5(2), 300-304. http://dx.doi.org/10.1137,/0905021.

Gilhooly, Kenneth J., & Murphy, P. (2005). Differentiating insight from non-insight
problems. Thinking & Reasoning, 11(3), 279-302.

Greene, Joshua (2014). Moral tribes: Emotion, reason, and the gap between us and them.
Penguin.

Grund, Friedrich (1979). Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer
Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632.
Prentice Hall, Inc., 1977. XI, 259 S. Zamm-Zeitschrift fiir Angewandte Mathematik und
Mechanik, 59, 141-142, URL https://api.semanticscholar.org/CorpusID:121678921.

Hauser, John R. (2014). Consideration-set heuristics. Journal of Business Research, 67(8),
1688-1699.

Hauser, John R., & Wernerfelt, Birger (1990). An evaluation cost model of consideration
sets. Journal of Consumer Research, 16(4), 393-408.

Huys, Quentin J. M., Eshel, Neir, O’Nions, Elizabeth, Sheridan, Luke, Dayan, Peter, &
Roiser, Jonathan P. (2012). Bonsai trees in your head: how the pavlovian system
sculpts goal-directed choices by pruning decision trees. PLoS Computational Biology,
8(3), Article €1002410.

Johnson, Joseph G., & Raab, Markus (2003). Take the first: Option-generation and
resulting choices. Organizational Behavior and Human Decision Processes, 91(2),
215-229.

Kaiser, Stefan, Simon, Joe J., Kalis, Annemarie, Schweizer, Sophie, Tobler, Philippe N.,
& Mojzisch, Andreas (2013). The cognitive and neural basis of option genera-
tion and subsequent choice. Cognitive, Affective, & Behavioral Neuroscience, 13(4),
814-829.

Kalis, Annemarie, Kaiser, Stefan, & Mojzisch, Andreas (2013). Why we should talk about
option generation in decision-making research. Frontiers in Psychology, 4, 555.
Keramati, Mehdi, Smittenaar, Peter, Dolan, Raymond J., & Dayan, Peter (2016).
Adaptive integration of habits into depth-limited planning defines a habitual-
goal-directed spectrum. Proceedings of the National Academy of Sciences, 113(45),

12868-12873.

Klein, Gary A. (1993). A recognition-primed decision (RPD) model of rapid decision
making. In J. Klein, R. Orasanu, C. Calderwood, & C. E. Zsambok (Eds.), Decision
making in action: models and methods (pp. 138-147). New York: Ablex Publishing
Corporation.

LeCun, Yann, Bengio, Yoshua, & Hinton, Geoffrey (2015). Deep learning. Nature,
521(7553), 436-444.

Lieder, Falk, Griffiths, Thomas L., & Hsu, Ming (2018). Overrepresentation of extreme
events in decision making reflects rational use of cognitive resources.. Psychological
Review, 125(1), 1.

Morris, Adam, Phillips, Jonathan, Huang, Karen, & Cushman, Fiery (2021). Gener-
ating options and choosing between them depend on distinct forms of value
representation. Psychological Science, 32(11), 1731-1746.

Nedungadi, Prakash, & Hutchinson, W. (1985). The prototypicality of brands: Relation-
ships with brand awareness, preference and usage. Advances in Consumer Research,
12, 489-503.

Peters, Sarah L., Fellows, Lesley K., & Sheldon, Signy (2017). The ventromedial frontal
lobe contributes to forming effective solutions to real-world problems. Journal of
Cognitive Neuroscience, 29(6), 991-1001.

Phillips, Jonathan, & Cushman, Fiery (2017). Morality constrains the default represen-
tation of what is possible. Proceedings of the National Academy of Sciences, 114(18),
4649-4654.

Phillips, Jonathan, Morris, Adam, & Cushman, Fiery (2019). How we know what not
to think. Trends in Cognitive Sciences, 23(12), 1026-1040.

https://doi.org/10.1016/j.cognition.2025.106108
https://osf.io/et89w
https://osf.io/et89w
https://osf.io/et89w
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb1
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb1
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb1
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb1
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb1
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb2
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb2
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb2
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb3
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb3
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb3
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb4
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb4
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb4
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb5
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb5
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb5
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb6
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb6
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb6
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb7
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb7
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb7
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb8
http://dx.doi.org/10.1137/0905021
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb10
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb10
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb10
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb11
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb11
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb11
https://api.semanticscholar.org/CorpusID:121678921
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb13
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb13
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb13
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb14
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb14
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb14
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb15
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb16
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb16
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb16
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb16
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb16
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb17
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb18
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb18
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb18
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb19
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb20
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb21
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb21
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb21
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb22
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb22
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb22
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb22
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb22
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb23
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb23
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb23
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb23
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb23
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb24
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb24
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb24
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb24
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb24
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb25
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb25
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb25
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb25
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb25
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb26
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb26
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb26
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb26
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb26
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb27
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb27
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb27

A. Zhang et al.

Saxe, Rebecca (2005). Against simulation: the argument from error. Trends in Cognitive
Sciences, 9(4), 174-179.

Silver, David, Hubert, Thomas, Schrittwieser, Julian, Antonoglou, loannis, Lai, Matthew,
Guez, Arthur, et al. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419), 1140-1144.

Simon, Herbert A. (1955). A behavioral model of rational choice. The Quarterly Journal
of Economics, 69(1), 99-118.

Sutton, Richard S., & Barto, Andrew G. (1998). Reinforcement learning: An introduction
(1 ed.). Cambridge: MIT Press.

The scikit-optimize contributors (2018). Scikit-optimize: Bayesian optimization for
machine learning. https://scikit-optimize.github.io.

10

Cognition 259 (2025) 106108

Ullman, Tomer D., Goodman, Noah D., & Tenenbaum, Joshua B. (2012). Theory
learning as stochastic search in the language of thought. Cognitive Development,
27(4), 455-480.

Wason, Peter C. (1968). Reasoning about a rule. Quarterly Journal of Experimental
Psychology, 20(3), 273-281.

Wolpert, David H., & Macready, William G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82.

Zhang, Zhihao, Wang, Shichun, Good, Maxwell, Hristova, Siyana, Kayser, Andrew S.,
& Hsu, Ming (2021). Retrieval-constrained valuation: Toward prediction of open-
ended decisions. Proceedings of the National Academy of Sciences, 118(20), Article
€2022685118.

Zhao, Bonan, Lucas, Christopher G., & Bramley, Neil R. (2024). A model of conceptual
bootstrapping in human cognition. Nature Human Behaviour, 8, 125-136.

http://refhub.elsevier.com/S0010-0277(25)00048-4/sb28
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb28
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb28
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb29
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb29
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb29
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb29
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb29
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb30
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb30
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb30
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb31
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb31
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb31
https://scikit-optimize.github.io
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb33
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb33
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb33
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb33
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb33
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb34
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb34
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb34
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb35
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb35
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb35
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb36
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb37
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb37
http://refhub.elsevier.com/S0010-0277(25)00048-4/sb37

	Similar failures of consideration arise in human and machine planning
	Introduction
	Candidate generation by value generalization
	Machine learning model of value function approximation
	A sequential planning task to elicit failures of consideration

	General methods
	Experiment 1: Eliciting failures of consideration
	Methods
	Results

	Experiment 2: Manipulating deliberation time
	Methods
	Results

	Experiment 3: Manipulating training
	Methods
	Results

	ML Planning Architecture and Experiments
	Architectural details
	Approximating the value function with a trained neural network
	Action evaluation and control by First Visit Monte Carlo

	In silico Experiments
	Model failures of consideration
	Manipulating ``decision time''
	Manipulating training
	Interrogating value function generalization

	Discussion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Supplementary data
	Data availability
	References

